	G Ordina			
		Obje	ective C	Questions
_	General Ch	aracte	eristics	
Ι.	The number of unpaired electr	rons in (Cr^+ will be	
	(a) 3	(b)	4	
	(c) 5	(d)	6	
2.	The highest oxidation state of	Cr will	be	
	(a) 2	(b)	3	
_	(c) 4	(d)	6	
3.	Which statement is true about	the trai	isitional eler	nents [MP PMT 1995
	(a) They are highly reactive			
	(b) They show variable oxida	tion stat	es	
	(c) They have low M.P.			
	(d) They are highly electropo	sitive		
4.	The transitional metal which			
	state and yellow orange compo			state is
	(a) Fe	(b)		
	(c) Cr		Со	
5.	Highest (+7) oxidation state is			
				1T 1999; Alims 1999 MP PET 1989, 2003
	(a) <i>Co</i>		Cr	MI 121 1989, 200;
		. ,		
5.	(c) V Transitional elements are	(a)	Mn	
	(a) All metals			
	(b) Few metals and few non-	metals		
	(c) All solids			
	(d) All highly reactive			
7.	Which of the following has hig	shest ion	ic radii	
	.2		.2	[MP PMT 1990
	(a) Cr^{+3}		Mn^{+3}	
	(c) Fe^{+3}	(d)	<i>Co</i> ⁺³	
3.	In a reaction the ferrous (Fe	++) iron	is oxidised	to ferric (Fe^{+++}
	ion. The equivalent weight of			
	to			[CPMT 1985
	(a) Half of the atomic weight	t		
	(b) $1/5$ of the atomic weight			
	(c) The atomic weight			
	(d) Twice the atomic weight Which of the following elemen	t has m	vimum dan	eity/
Э.	Which of the following elemen			sity
Э.	Which of the following element (a) Hg	(b)	Au	sity
	Which of the following element (a) Hg (c) Os	(b) (d)		
9. 10.	 Which of the following element (a) Hg (c) Os Which is heaviest among the following the follo	(b) (d) following	Au Pb	
	 Which of the following element (a) Hg (c) Os Which is heaviest among the f (a) Iron 	(b) (d) following (b)	Au Pb Copper	sity [CPMT 1986
0.	 Which of the following element (a) Hg (c) Os Which is heaviest among the f (a) Iron (c) Gold 	(b) (d) following (b) (d)	Au Pb Copper Silver	[CPMT 1986
	 Which of the following element (a) Hg (c) Os Which is heaviest among the f (a) Iron 	(b) (d) following (b) (d) variable	Au Pb Copper Silver	[CPMT 1986
0.	Which of the following element (a) Hg (c) Os Which is heaviest among the f (a) Iron (c) Gold Transitional elements exhibit electrons from the following o [MP F	(b) (d) collowing (b) (d) variable rbits	Au Pb Copper Silver valencies be	[CPMT 1986 cause they releas 7 1989;UPSEAT 200
0.	Which of the following element (a) Hg (c) Os Which is heaviest among the f (a) Iron (c) Gold Transitional elements exhibit electrons from the following o [MP F (a) ns orbit	(b) (d) collowing (b) (d) variable rbits PET/PMT (b)	Au Pb Copper Silver valencies be 1988; MP PET ns and np	[CPMT 1986 cause they releas r 1989;UPSEAT 200 orbits
0.	Which of the following element (a) Hg (c) Os Which is heaviest among the f (a) Iron (c) Gold Transitional elements exhibit electrons from the following o [MP F	(b) (d) following (b) (d) variable rbits PET/PMT (b) (d)	Au Pb Copper Silver valencies be ns and $np(n - i)d$ or	[CPMT 1986 cause they releas T 1989;UPSEAT 200 orbits bit

	(c) <i>d</i> - block elements	(d)	f- block elements	
13.	Which forms coloured salts		[CPMT 1984; MP PET 1995]	
	(a) Metals	(b)	Non-metals	
	(c) p - block elements	(d)	Transitional elements	
14.	Which element belongs to $d - blacket$		[CPMT 1984]	
	(a) <i>Na</i>	(b)	Ca	
	(c) <i>Cu</i>	(d)	Ar	
15.	Variable valency is shown by		[MP PMT 1986; AMU 1999]	
	(a) <i>Na</i>	(b)	Cu	
	(c) Mg	(d)	Al	
16.	The element with a atomic numl	ber 26	is [CPMT 1972]	
	(a) A non-metal	(b)	Krypton	
	(c) Iron	(d)	Manganese	
17.	One of the following metals form			
			its extraction. This metal is[NCERT 19	84
	(a) Iron	(b)	Nickel	
18.	(c) Cobalt The coinage metals are	(d)	Tungston	
10.	(a) Iron, Cobalt, Nickel	(b)	Copper and Zinc	
	(c) Copper, Silver and Gold	(d)		
19.	Which of the following structure	• • •		
			[CPMT 1973, 86]	
	(a) 2, 8, 1	(b)	2, 8, 18, 1	
	(c) 2, 8, 8	(d)	2, 18, 8, 3	
20.	An elements in+3 oxidation sta	te ha	s the electronic configuration	
	$(Ar)3d^3$. Its atomic number is	[JIP/	MER 2002]	
	(a) 24	(b)	23	
	(c) 22	(d)	21	
21.	The catalytic activity of the trans	sition	•	
21.	ascribed to their	sition	metals and their compounds is [Kerala (Engg.) 2002]	
21.	ascribed to their (a) Chemical reactivity	sition	•	
21.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour	sition	•	
21.	ascribed to their(a) Chemical reactivity(b) Magnetic behaviour(c) Unfilled <i>d</i>-orbitals		[Kerala (Engg.) 2002]	
21.	ascribed to their(a) Chemical reactivity(b) Magnetic behaviour(c) Unfilled <i>d</i>-orbitals		•	
21. 22.	 ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i>-orbitals (d) Ability to adopt multiple or 	xidatio	[Kerala (Engg.) 2002]	
	 ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i>-orbitals (d) Ability to adopt multiple or ability 	xidatio	[Kerala (Engg.) 2002]	
	 ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i>-orbitals (d) Ability to adopt multiple or ability What is the general electronic 	xidatio config	[Kerala (Engg.) 2002] on states and their complexing guration for 2- row transition	
	 ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i>-orbitals (d) Ability to adopt multiple of ability What is the general electronic series (a) [<i>Ne</i>]3<i>d</i>¹⁻¹⁰,4<i>s</i>² 	xidatio config (b)	[Kerala (Engg.) 2002] on states and their complexing guration for 2 row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^{2}$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$	xidatio config (b) (d)	[Kerala (Engg.) 2002] on states and their complexing guration for 2 row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$	
	 ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i>-orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) [Ne]3d¹⁻¹⁰,4s² (c) [Kr]4d¹⁻¹⁰, 5s¹⁻² Transitional elements are name 	xidatio config (b) (d)	[Kerala (Engg.) 2002] on states and their complexing guration for 2 row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$	
22.	 ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i>-orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) [Ne]3d¹⁻¹⁰,4s² (c) [Kr]4d¹⁻¹⁰, 5s¹⁻² Transitional elements are name characters are 	xidatio config (b) (d) d tran	[Kerala (Engg.) 2002] on states and their complexing guration for 2 row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block	xidatio config (b) (d) d tran	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻⁷ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block	xidatio config (b) (d) d tran c elem	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻⁷ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block	xidatic config (b) (d) d tran elem group	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻⁷ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple of ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> - <i>A</i>	xidatic config (b) (d) d trai c elem group mts	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple of ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> - <i>A</i> (d) They are like inactive elements	xidatic config (b) (d) d trai c elem group mts	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> - <i>A</i> (d) They are like inactive elements Those elements whose two outer	xidatic config (b) (d) d trai c elem group mts	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> - <i>A</i> (d) They are like inactive element Those elements whose two outer with electrons are	xidatic config (b) (d) d trai c elem group mts	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> - <i>A</i> (d) They are like inactive element Those elements whose two outer with electrons are (a) <i>p</i> - block elements	xidatic config (b) (d) d trai c elem group mts	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> – <i>A</i> (d) They are like inactive elements with electrons are (a) <i>p</i> - block elements (b) <i>s</i> - block elements (c) Transitional elements (d) Both <i>s</i> and <i>p</i> - block elements (d) Both <i>s</i> and <i>p</i> - block elements	xidatio config (b) (d) d tran c elem group nts "most	[Kerala (Engg.) 2002] on states and their complexing guration for 2- row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents	
22.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> – <i>A</i> (d) They are like inactive element with electrons are (a) <i>p</i> - block elements (b) <i>s</i> - block elements (c) Transitional elements	xidatio config (b) (d) d tran c elem group nts "most	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ^{-/-} row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents o orbitals are incompletely filled	
22. 23. 24.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> - <i>A</i> (d) They are like inactive element Those elements whose two outer with electrons are (a) <i>p</i> - block elements (b) <i>s</i> - block elements (c) Transitional elements (d) Both <i>s</i> and <i>p</i> - block element Which ion has maximum magnet	xidatio config (b) (d) d tran c elem group nts "most	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents of orbitals are incompletely filled	
22. 23. 24.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> – <i>A</i> (d) They are like inactive elements with electrons are (a) <i>p</i> - block elements (b) <i>s</i> - block elements (c) Transitional elements (d) Both <i>s</i> and <i>p</i> - block elements (d) Both <i>s</i> and <i>p</i> - block elements	xidatio config (b) (d) d tran c elem group nts "most	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ^{-/-} row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents o orbitals are incompletely filled	
22. 23. 24.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> – <i>A</i> (d) They are like inactive element Those elements whose two outer with electrons are (a) <i>p</i> - block elements (b) <i>s</i> - block elements (c) Transitional elements (d) Both <i>s</i> and <i>p</i> - block element (d) Both <i>s</i> and <i>p</i> - block element	xidatio config (b) (d) d tran group most elem group most tic most	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ⁻ row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents or orbitals are incompletely filled	
22. 23. 24.	ascribed to their (a) Chemical reactivity (b) Magnetic behaviour (c) Unfilled <i>d</i> -orbitals (d) Ability to adopt multiple or ability What is the general electronic series (a) $[Ne]3d^{1-10}, 4s^2$ (c) $[Kr]4d^{1-10}, 5s^{1-2}$ Transitional elements are name characters are (a) In between <i>s</i> and <i>p</i> - block (b) Like that of <i>p</i> and <i>d</i> - block (c) They are members of <i>I</i> - <i>A</i> (d) They are like inactive element Those elements whose two outer with electrons are (a) <i>p</i> - block elements (b) <i>s</i> - block elements (c) Transitional elements (d) Both <i>s</i> and <i>p</i> - block element Which ion has maximum magnet	xidatio config (b) (d) d tran group steen group stor troost tic most	[Kerala (Engg.) 2002] on states and their complexing guration for 2 ^{-/-} row transition [Orrisa JEE 2002] $[Ar]3d^{1-10}, 4s^{1-2}$ $[Xe]5d^{1-10}, 5s^{1-2}$ nsition elements because their ents ents of orbitals are incompletely filled ment [AIIMS 1983; MP PMT 1990] Mn^{+3} Cu^{+2}	

Which of the following transition metal is present in misch n(a) La(b) Sc

r www.studentbro.in

elements [EAMCET 1988, 89]
(a) They readily form complex compounds
(b) They show variable valency
(c) All their ions contain partially filled d-electron levels
28. Which of the following represents the electronic configuration of a
transition element [EAMCET 1987]
(a)
$$1s^2, 2s^2p^6, ..., ns^2p^3$$

(b) $1s^2, 2s^2p^6, ..., ns^2p^6d^3, (n + 1)s^2$
(c) $1s^2, 2s^2p^6, ..., ns^2p^6d^{10}, (n + 1)s^2p^1$
(d) $1s^2, 2s^2p^6, ..., ns^2p^6$
29. The general electronic configuration of transition elements is
[CPMT 1984, 90, 2002; CBSE PMT 1991, 96;
AIIMS 2001; Pb. CET 2000; MP PMT 2003]
(a) $(n - 1)d^{1-5}$ (b) $(n - 1)d^{1-10}ns^1$
(c) $(n - 1)d^{1-5}$ (b) $(n - 1)d^{1-10}ns^1$
(c) $(n - 1)d^{1-5}$ (d) $ns^2(n - 1)d^{10}$
30. Transition elements are coloured
[MP PMT 1986; Pb. CET 1989; RPET 1999]
(a) Due to small size
(b) Due to metallic nature
(c) Due to small size
(d) All of these
31. Which of the following has the maximum number of unpaired d-
electrons [BIT 1992; CBSE PMT 1999]
(a) Zn (b) Fe^{2+}
(c) Ni^{3+} (d) Zn^{2+}
33. Which does not form amalgam
[AFMC 1988; MP PET 2001]
(a) Fe (b) Co
(c) Ag (d) Zn
34. Transition metals are often paramagnetic owing to
[Bit 2022]
(a) Their high MP, and BP.
(b) The presence of one or more unpaired electrons in the system
(d) Their bigh MP, and BP.
(e) The presence of one or more unpaired electrons in the system
(d) Their bigh MP, and BP.
(b) The presence of one or more unpaired electrons in the system
(d) Their bigh MP, and BP.
(e) Non-metals (b) Transition elements of groups 1-A
and 11-A
35. Elements which generally eshibit multiple oxidation states and whose
ions are usually coloured are
[MP PET/PMT 1998; MP PMT 2000]
(a) Metalloids (b) Transition elements
(c) Non-metals (c) Nor-metals
(c) Non-metals (c) Saes
36. Which of the following transition metal cation has maximum
unpaired electrons
[MP PET/PMT 1998; MP PMT 1997]
(a) Mn^{+2} (b) Fe^{+2}

(d) *Cr*

Which of the following statements is not true in regard to transition

(c) Ni

elements

 Co^{2+}

(c)

27.

[MP PET/PMT 1988] (a) *ns* electron (b) (n-1)d electron (c) (n+1)d electron (d) ns + (n-1)d electron 38. Which of the following statement is correct [MP PET/PMT 1988; MP PMT 1991] $(a) \quad \mbox{Iron belongs to 3rd transition series of the periodic table}$ (b) Iron belongs to *f*-block of the periodic table (c) Iron belongs to second transition series of the periodic table (d) Iron belongs to group VIII of the periodic table Zinc does not show variable valency like *d*-block elements because[MP PET 1989 39. (a) It is a soft metal *d*-orbital is complete (b) It is low melting (c) (d) Two electrons are present in the outermost orbit 40. Which of the following is a transitional element [MP PMT 1989; DPMT 1982] (a) *Al* As (b) (c) Ni (d) Rb Which is not true for transition elements 41. (a) They are all metals (b) They show variable valency (c) They form coloured ions (d) They do not form co-ordinate compounds 42. The main reason for not using a mercury electrolytic cell in NaOH manufacture is that [CPMT 1988] (a) Hg is toxic (b) Hg is a liquid Hg has a high vapour pressure (c) (d) Hg is a good conductor of electricity 43. Lanthanum is grouped with *F*-block elements because [AMU 2000] (a) It has partially filled *f*-orbitals (b) It is just before Ce in the periodic table (c) It has both partially filled *f* and *d*-orbitals (d) The properties of Lanthanum are very similar to the elements of 4f block The element having electronic configuration belongs to 44. $ns^{2}(n-1)d^{1-10}(n-2)f^{1-14}$ [UPSEAT 2001] (b) *p*-block (a) s-block (c) *d*-block (d) *f-*block 45. Variable valency is shown by [UPSEAT 2001] (a) Typical elements Normal elements (b)

(c) Transition elements

46.

47.

48.

Which ion is not coloured

 Cr^{3+}

(c) Cr^{2+}

(a) 5 (c) 3

involving

(a)

Maximum number of oxidation states of transition metal is derived

from the following configuration

37.

CLICK HERE Get More Learning Materials Here :

 Ni^{2+}

(d)

(d) None of these

 Co^{2+}

(d) Cu^+

(b) 4

(d) 2

Fe, Co and Ni have valuable catalytic properties in process

(b)

The number of unpaired electrons in ferrous ion is

[DPMT 2001]

[JIPMER (Med.) 2001]

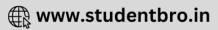

	(a) Organic compound (b) Oxidation		(c) V (d) <i>Mo</i>
	(c) Hydrogenation (d) Compounds of hydrogen	<i>c</i> .	· ·
49.	Which of the following statement is not correct	61.	A transition element X has a configuration $[Ar]3d^4$ in its + 3 oxidation state. Its atomic number is
	[NCERT 1983]		[CBSE PMT 1996]
	(a) Metals contribute their valency electrons to the common sea of		(a) 25 (b) 26
	electrons		(a) 25 (b) 26 (c) 22 (d) 19
	(b) Metals have high co-ordination number(c) Metals tend to adopt closely packed structures	62.	The transition element have a characteristic electronic configuration
	(d) Metals have high lattice energy		which can be represented as
50.	Zinc, cadmium and mercury show the properties of		[MP PMT/PET 1988; MP PMT 1989]
	(a) Typical elements (b) Normal elements		(a) $(n-2)s^2p^6d^{1-10}(n-1)s^2p^6ns^2$
	(c) Transitional elements (d) Rare elements		(b) $(n-2)s^2p^6d^{1-10}(n-1)s^1p^6d^1$ or d^1ns^1
51.	Iron is		(c) $(n-1)s^{1}p^{6}d^{10}ns^{2}p^{6}nd^{1-10}$
	(a) A normal element (b) A typical element		
ED.	(c) A transitional element (d) An inert element Platinum, palladium, iridium etc., are called noble metals because [NCEF	DT 1075. ((d) $(n-1)s^2p^6d^{1-10}ns^1$ or ns^2
52.	(a) Alfred Noble discovered them	63.	Number of unpaired electrons in $Fe^{+++}(Z = 26)$ is
	(b) They are inert towards many common reagents		[MP PMT 1995; RPET 2003]
	(c) They are shining lustrous and pleasing to look at		(a) 4 (b) 5
	(d) They are found in active state		(c) 6 (d) 3
53.	Which of the following statement is not true about Mohr's salt[CPMT is	9 ^{88]} 64.	Of the ions Zn^{2+} , Ni^{2+} and Cr^{3+} [atomic number of $Zn = 30$,
	(a) It decolourises $KMnO_4$		Ni = 28, Cr = 24] [MP PET 1996]
	(b) It is a primary standard		(a) Only Zn^{2+} is colourless and Ni^{2+} and Cr^{3+} are coloured
	(c) It is a double salt		(b) All three are colourless
	(d) Oxidation state of iron is +3 in this salt		(c) All three are coloured
54.	Which one of the following statement is true for transition elements[AI	IMS 1983;	(d) Only Ni^{2+} is coloured and Zn^{2+} and Cr^{3+} are colourless
	(a) They exhibit diamagnetism	65.	Common oxidation state of scandium, a transition element is/are
	(b) They exhibit inert pair effect(c) They do not form alloys		[atomic number of $Sc = 21$] [MP PET 1996]
	(c) They do not form alloys(d) They show variable oxidation states		(a) $+ 4$ (b) $+ 1$ (c) $+ 2$ and $+ 3$ (d) $+ 4$ and $+ 1$
		66.	Which of the following is not correct about transition metals
55.	The valence shell electronic configuration of Cr^{2+} ion is		[MP PET 1996]
	[Orissa JEE 2005]		(a) Their melting and boiling points are high
	(a) $4s^{o}3d^{4}$ (b) $4s^{2}3d^{2}$		(b) Their compounds are generally coloured(c) They can form ionic or covalent compounds
	(c) $4s^2 3d^0$ (d) $3p^6 4s^2$		(d) They do not exhibit variable valency
56.	The hardness of Cr is due to and metallic lusture is due to	67.	From +6 to +1 oxidation state is shown by the element of group
	(a) Covalent bond, metallic bond		(a) V-B (b) VI-B
	(b) Covalent bond, hydrogen bond	60	(c) VII-B (d) VIII
	(c) Metallic bond, covalent bond	68.	The electronic configuration of cobalt is
	(d) Metallic bond, hydrogen bond		(a) $1s^2, 2s^2 2p^6. 3s^2 3p^6 3d^1, 4s^2$
57.	In the first transition series, the highest B.P. and M.P. is of		(b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^7, 4s^2$
	(a) <i>Cr</i> (b) <i>V</i>		(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^3, 4s^2$
	(c) Ni (d) Fe		(d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^2$
58.	In the following transition elements, the lowest M.P. and B.P. is	69.	Out of all the known elements the number of transitional elements
	exhibited by	0).	is
	(a) Cr (b) Hg		(a) 80 (b) 61
	(c) Cu (d) Au		(c) 43 (d) 38
59.	In the following members of transition elements, the lowest	70.	Cigarette or gas lighter is made up of (a) Misch metal (b) Alkali metal
	ionization energy is of $(-)$ T ; $(-)$ $(-)$		(c) Noble metal (d) None
	(a) Ti (b) Sc	71.	Bullet-proof steel alloy is prepared by using
	(c) V (d) Mn		(a) <i>Sc</i> (b) <i>Ni</i>
60.	Which of the following has second ionisation potential less than expected		(c) Zr (d) Zn
	(a) Cr (b) Zn	72.	In making gun-berrel , the steel used is
			(a) $Fe - Mn$ (b) $Fe - Cr$

r www.studentbro.in

	(c) $Fe-W$	(d)	Ni – Mo	
73.	Neobium and tantalum met	als ar	e used in making surgical	88.
	instruments because they are			
	(a) Non-corrosive	• • •	Hard	
	(c) Soft	(d)	All	89.
74.	To support tungstun filament in	n electi	ric bulb, the steel used is	- 3
	(a) Cr	(b)	Ni	
	(c) Mn	(d)	Мо	
75.	The elements belonging to the	. ,		
75.	number from	. 11130	transition series have atomic	
	(a) 19 to 37	(b)	22 to 32	
	(c) 24 to 30	• • •	21 to 30	90.
76.	Which of the following elem	• • •	-	90.
70.	transition series		[BHU 2000; MP PMT 1995]	
	(a) <i>Fe</i>	(b)	V	
	(c) Ag	(d)	Cu	91.
		(u)	20	•
77.	Fe^{2+} shows		[RPET 2000]	
	(a) Ferromagnetism	(b)	Paramagnetism	
	(c) Diamagnetism	(d)	None of these	92.
78.	Zinc and mercury do not show	variabl	5	
	because		[RPMT 2000; MP PMT 2000]	
	(a) They are soft			
	(b) Their <i>d</i> - shells are completed	te		
	(c) They have only two electro	ons in t	the outermost subshell	
	(d) Their <i>d</i> -shells are incomple	ete		93.
79.	Cuprous ion is colourless while	cupric	ion is coloured because	
	(a) Both have half filled p and	<i>d</i> -orbi	tals	
		lete d	orbital and cupric ion has a	
	complete <i>d</i> -orbital			94.
	(c) Both have unpaired electro	ons in t	he <i>d</i> -orbitals	54.
		lete d-	orbital and cupric ion has an	
	incomplete <i>d</i> -orbital			
80.	Transition metals are related to	which	block	
			[MP PMT 2003; CPMT 1991]	
	(a) s-block	(b)	[MP PMT 2003; CPMT 1991] <i>p</i> -block	
	(c) <i>d</i> -block	(b) (d)	[MP PMT 2003; CPMT 1991] <i>p</i> -block None of these	95.
81.	(c) <i>d</i> -block The number of unpaired electro	(b) (d)	[MP PMT 2003; CPMT 1991] <i>p</i> -block None of these cobalt atom is (atomic number	95.
81.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$)	(b) (d) ons in	[MP PMT 2003; CPMT 1991] <i>p</i> -block None of these cobalt atom is (atomic number [MP PMT 2003]	95.
81.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2	(b) (d) ons in (b)	[MP PMT 2003; CPMT 1991] <i>p</i> -block None of these cobalt atom is (atomic number [MP PMT 2003] 3	95.
	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4	(b) (d) ons in	[MP PMT 2003; CPMT 1991] <i>p</i> -block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1	95.
81. 82.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2	(b) (d) ons in (b) (d)	[MP PMT 2003; CPMT 1991] <i>p</i> -block None of these cobalt atom is (atomic number [MP PMT 2003] 3	95. 96.
	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 <i>Zn</i> is related to which group (a) 11 <i>B</i>	(b) (d) ons in (b)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 1]A	
	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 <i>Zn</i> is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i>	(b) (d) ons in (b) (d) (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11A 1B	
	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 <i>Zn</i> is related to which group (a) 11 <i>B</i>	(b) (d) ons in (b) (d) (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11A 1B	
82.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 <i>Zn</i> is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i>	(b) (d) ons in (b) (d) (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 1 <i>B</i> not show variable valency	
82.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element	(b) (d) ons in (b) (d) (b) (d) does r	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 1 1 1 1 1 1 1 1 1 1 1 1 1	
82.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i>	(b) (d) ons in (b) (d) (b) (d) does r (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 1.8 not show variable valency Zn Mn	
82. 83.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama	(b) (d) ons in (b) (d) (b) (d) does r (b) (d) agnetic	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 1 <i>B</i> not show variable valency <i>Zn</i> <i>Mn</i> transitional metal ion	96.
82. 83.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) Ni^{+2}	(b) (d) (b) (d) (b) (d) (d) (d) (d) (d) (d) agnetic (b)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 1 1 1 1 1 1 1 1 1 1 1 1 1	96.
82. 83. 84.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) Co^{+2}	(b) (d) (b) (d) (d) (d) (d) (d) (d) agnetic (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 18 not show variable valency Zn Mn transitional metal ion Zn ⁺² Cu ⁺²	96.
82. 83.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) Ni^{+2}	(b) (d) (b) (d) (d) (d) (d) (d) (d) agnetic (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 18 not show variable valency Zn Mn transitional metal ion Zn^{+2} Cu^{+2} ide	96.
82. 83. 84.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) Co^{+2} Which of the following is not at	(b) (d) ons in (b) (d) (d) (d) (d) agnetic (b) (d) n actim	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 18 tot show variable valency Zn Mn transitional metal ion Zn^{+2} Cu^{+2} ide [DPMT 2005]	96.
82. 83. 84.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) Co ⁺² Which of the following is not an (a) Curium	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 (MP PMT 2003] 1 1 1 1 1 1 1 1 1 1 1 1 1	96.
82. 83. 84. 85.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) Co ⁺² Which of the following is not an (a) Curium (c) Uranium	(b) (d) (b) (d) (d) (d) (d) (d) (d) agnetic (b) (d) (d) (d) (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 1 1 1 1 1 1 1 1 1 1 1 1 1	96. 97.
82. 83. 84.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) Co ⁺² Which of the following is not an (a) Curium (c) Uranium The ability to form complex of	(b) (d) (b) (d) (d) (d) (d) (d) (d) agnetic (b) (d) (d) (d) (b) (d)	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 1 1 1 1 1 1 1 1 1 1 1 1 1	96.
82. 83. 84. 85.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) <i>Co</i> ⁺² Which of the following is not an (a) Curium (c) Uranium The ability to form complex of ion is due to	(b) (d) (b) (d) (d) (d) (d) (d) (d) agnetic (b) (d) (d) (d) (d) (c) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 1.8 not show variable valency Zn Mn transitional metal ion Zn^{+2} Cu^{+2} ide [DPMT 2005] Californium Terbium unds by the transitional metal	96. 97.
82. 83. 84. 85.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) <i>Co</i> ⁺² Which of the following is not an (a) Curium (c) Uranium The ability to form complex of ion is due to (a) Small size	(b) (d) (b) (d) (d) (d) (d) (d) (d) agnetic (b) (d) (d) (d) (d) (c) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 1 1 1 1 1 1 1 1 1 1 1 1 1	96. 97.
82. 83. 84. 85.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) <i>Co</i> ⁺² Which of the following is not an (a) Curium (c) Uranium The ability to form complex of ion is due to (a) Small size (c) High nuclear charge	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 1.8 not show variable valency Zn Mn transitional metal ion Zn^{+2} Cu^{+2} ide [DPMT 2005] Californium Terbium ands by the transitional metal Vacant 'd' orbitals All of these	96. 97.
82. 83. 84. 85.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) <i>Co</i> ⁺² Which of the following is not an (a) Curium (c) Uranium The ability to form complex of ion is due to (a) Small size	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 1.8 not show variable valency Zn Mn transitional metal ion Zn^{+2} Cu^{+2} ide [DPMT 2005] Californium Terbium ands by the transitional metal Vacant 'd' orbitals All of these	96. 97. 98.
82. 83. 84. 85.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) <i>Co</i> ⁺² Which of the following is not an (a) Curium (c) Uranium The ability to form complex co ion is due to (a) Small size (c) High nuclear charge Which of the following will give	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 18 not show variable valency Zn Mn transitional metal ion Zn^{+2} Cu^{+2} ide [DPMT 2005] Californium Terbium mds by the transitional metal Vacant 'd' orbitals All of these hydrated ion	96. 97. 98.
82. 83. 84. 85.	(c) <i>d</i> -block The number of unpaired electro of $Co = 27$) (a) 2 (c) 4 Zn is related to which group (a) 11 <i>B</i> (c) 1 <i>A</i> Which of the following element (a) <i>Ni</i> (c) <i>Cu</i> Which of the following is diama (a) <i>Ni</i> ⁺² (c) <i>Co</i> ⁺² Which of the following is not an (a) Curium (c) Uranium The ability to form complex of ion is due to (a) Small size (c) High nuclear charge	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	[MP PMT 2003; CPMT 1991] p-block None of these cobalt atom is (atomic number [MP PMT 2003] 3 1 [MP PMT 2003] 11.4 1.8 not show variable valency Zn Mn transitional metal ion Zn^{+2} Cu^{+2} ide [DPMT 2005] Californium Terbium ands by the transitional metal Vacant 'd' orbitals All of these	96. 97. 98.

	(c) (a) and (b) both	(d) V^{+3}
88.	Magnetic moment is expressed in	
	(a) Faraday	(b) Calorie
80	(c) Bohr Magneton	(d) Debye
89.		on elements are due to the presence ransition metal ions, which of the in aqueous solution
	(a) Ti^{3+}	(b) Ti^{4+}
	(c) Fe^{2+}	(d) Fe^{3+}
	(The at. no. of <i>Ti</i> and <i>Fe</i> are 2	22 and 26 respectively)
90.	In the periodic table first transition	on series is placed in
	(a) Third period	(b) Fourth period
	(c) Fifth period	(d) None of these
91.	The element having general electr	ronic configuration $3d^4 4s^1$ is [BHU 1978; CP
	(a) Noble gas	(b) Non-metal
	(c) Metalloid	(d) Transition metal
92.	Which of the following general	l configuration of outermost shell
	represents chromium element [<i>Cr</i> 's	
	•	91; MP PMT 1992, 2001; RPET/PMT 1999]
	(a) d^5s^1	(b) $d^6 s^0$
	(c) d^4s^2	(d) d^3s^2
93.	Which element gives maximum b	
	[KCET 2000]	[MP PMT 1990]
	(a) V	(b) <i>Cr</i>
	(c) Mn	(d) Fe
94.	In first transition series, the melti	ing point of Mn is low because [MP PMT/PET
	(a) Due to d^{10} configuration, r	metallic bonds are strong
	(b) Due to d^7 configuration, m	netallic bonds are weak
	(c) Due to d^5 configuration, m (d) None of these	netallic bonds are weak
95.	Which of the following ions has t	the least magnetic moment
90.	which of the following folis has t	[MP PMT 1993]
	(a) Cu^{+2}	(b) Ni^{+2}
	(c) Co^{+3}	(d) Fe^{+2}
96.		configurations of transition metals,
	which shows the highest oxidation	
	(a) $3d^{3}4s^{2}$	[MP PMT 1993; MP PET 1995, 2001]
		(b) $3d^5 4s^1$
	(c) $3d^5 4s^2$	(d) $3d^6 4s^2$
97 .	Which of the following is not true	e for transition metals
		[MP PET 1993]
	(a) They are malleable and duct	
	(b) They have high boiling and the set of th	
	(c) They crystallize with body packed structures only	centred cubic and hexagonal close-
	(d) They show variable oxidation	n states although not always
98.	The most malleable of all the met	tals is
	(a) Silver	(b) Sodium
	(c) Gold	(d) Platinum
99.	Paramagnetism is exhibited by me	
	(-) Not -4: . 1:	[NCERT 1981; Manipal MEE 1995]
	(a) Not attracted in a magnetic	пеіа

- (a) Not attracted in a magnetic field
- $(b) \quad \text{Containing only paired electrons} \\$



113.	The number of unpaired elec	trons in Zn^{++} is			e out on the surface of atom and a	ire
	(c) <i>Ce</i>	(d) Eu		•	oor shielders of nuclear charge	
	(a) La	(b) Nd		(b) <i>f</i> -orbital an incomplet		
112.		I + III oxidation states are common is		[AIIMS 2003] (a) <i>f</i> -orbital electrons are	[AMU 2000; BHU 200 easily lost	ני
	(c) Reduction of Ag	(d) Reduction of <i>Cu</i>	124.	Lanthanide contraction occ	_	ופר
	(a) Oxidation of Ag	(b) Oxidation of <i>Cu</i>	10.4		re unpaired <i>d</i> -electrons	
	(a) Ouid-tion of A	[MH CET 2002]		(c) They have one or mor		
				(b) They form coloured sa		
111.		is a solution become blue due to		(a) They are reducing age		
	(a) <i>Rn</i> (c) <i>Fe</i>	(b) /v/ (d) <i>Co</i>			[MP PMT 199	¥7]
110.		therapy is [DPMT 2002]	123.	The 3 <i>d</i> -metal ions are para	magnetic in nature because	
110	(c) Ti^{+3} The substance used in cancer			(d) Very low ionization er		
	.2			(c) High charge/size ratio		
	(a) Cu^{+2}	(b) Fe^{+3}		(b) Strong electronegative		
109.	Which of the following is a c	olourless ion [EAMCET 1992]		(a) Variable oxidation stat	•	
	(c) <i>V</i>	(d) Cr	144.	their	[MP PMT 199	
	(a) <i>Fe</i>	(b) <i>Sc</i>	122.		(d) <i>Du</i> ions to form stable complexes is due	to
		[MP PET 2003]		(c) <i>Pb</i>	(d) <i>Ba</i>	
108.	In which of the following me			(a) Hg	(b) <i>Al</i>	
	(c) Zinc	(d) Antimony			drogen from water and acid is	
	brass (a) Lead	[MP PET 2003; MP PMT 2004] (b) Silver	121.		in the electrochemical series, the met	tal
107.		nents is alloyed with copper to form		(c) Monel metal (e) None of these		
	(c) <i>d</i> -block element	(d) <i>f</i> -block element		(a) Gun metal (c) Monel metal	(d) Bell metal	
	(a) <i>s</i> -block element	(b) <i>p</i> -block element	120.	(a) Gun metal	(b) Wood's metal	" " †]
106.	Europium is	[DPMT 2005]	120.	Which of the following mel		241
	(c) <i>V</i>	(d) <i>Sc</i>		(c) <i>Ni</i>	(d) <i>Cu</i>	
	(a) Cr	(b) Fe		(a) <i>Cr</i>	(b) <i>Co</i>	
	22; <i>V</i> =23; <i>Cr</i> =24; <i>Fe</i> =26)	[MP PET 2003]	119.	state [RPET 2003]	instrom metals can have highest oxidation	511
105.		etrons is maximum in (Atomic no. : $Ti =$	119.		nsition metals can have highest oxidation	
	(c) $3d^5$	(d) $3d^7$		2	al elements show only one valence state	
	(a) $3d^{1}$	(b) $3d^8$		 (c) Most of the transition activity 	nal elements show pronounced cataly	tic
	magnetic moment having out	-		•	any of their simple ions are coloured	 .
104.		transition metal ion is shown highest				
	(c) Gold	(d) Both (a) and (b)		•	elements are predominantly metallic	נכי
	(a) Nickel	(b) Cobalt	118.	All the following statement except that	s about the transitional elements are tr [Kerala (Med.) 200	-
		[CPMT 2001]		(c) Cu	(d) Ge	
103.	Which of the following transi	tion metal is used as a catalyst				
	(c) <i>Cu</i>	(d) All of these		(a) Al	(b) <i>Rb</i>	
	(a) Ag	(b) <i>Au</i>	117.	Which has valency two	x-7 - 7	
102.	Complex ion is shown by	[CPMT 2001]		(c) $3d^7$	(d) $3d^9$	
	(d) Most typical oxidation o			(a) $3d^2$	(b) $3d^5$	
	(c) All lanthanides are high	y dense metals			[MP PET 1993; MP PMT 1995; RPMT 199	19]
	increase in atomic num	ber		with the outer electronic co	-	
	methods (b) The ionic radii of triva	lent lanthanides steadily increase with	116.		(d) $3a$ $4s$ $4p$ nent is shown by the transition metal id	011
	• • • •	ed from one another by ion exchange		(c) $3d^3 4s^2$	(d) $3d^24s^24p^2$	
	elements is false	[AMU 2001]		(a) $3d^5 4s^0$	(b) $3d^4 4s^1$	
101.		ng statements concerning lanthanides			[MP PET 1993; MP PMT 1994; AFMC 200)2]
	(c) Fe^{+2}	(d) Fe^{+3}		of $Mn = 25$) in its groun		
	(a) Fe	(b) Fe^+	115.	The electronic configuration	n (outermost) of Mn^{+2} ion (atomic n	10
		[DCE 2001]		(c) Nickel	(d) Copper	
100.	The higher number of unpair			(a) Chromium	(b) Scandium	
	(d) Carrying unpaired electr	-	114.	The first transition element		
	(c) Carrying a positive char	ge		(c) 4	(d) 0	

125.	Which is most reactive metal	[BHU 1979]		(b) Their d' orbitals are empty
	(a) Fe	(b) <i>Pt</i>		(c) They do not form complex compounds
	(c) Ni	(d) <i>Co</i>		(d) They do not form coloured compounds
126.	Least reactive metal is		140.	Which of the following is the weakest reducing agent
	(a) Fe	(b) <i>Os</i>		
	(c) Ni	(d) <i>Pt</i>		(a) Zn (b) Cu
127.	Which occludes hydrogen			(c) H_2 (d) Li
	(a) Os	(b) <i>Pt</i>	141.	The decrease in atomic volume from Cr to Cu is very negligible
	(c) Ni	(d) All of these		because
128.	Which has the maximum ferrom	agnetic character		(a) Increase in nuclear change
	(a) Fe	(b) <i>Co</i>		(b) Screening effect
	(c) Ni	(d) <i>Pt</i>		(c) Unpaired electrons of <i>Cr</i>
129.	Which forms interstitial compou			(d) None
	$()$ E_{2}	[BHU 1982; MP PMT 1983]	142.	The heaviest atom amongst the following is
	(a) Fe	(b) Co		[Kurukshetra CEE 1998]
120	(c) <i>Ni</i> Which occurs in nature in free s	(d) All of these		(a) Uranium (b) Radium
130.		()		(c) Lead (d) Mercury
		(b) <i>Co</i> (d) <i>Pt</i>	143.	Thallium shows different oxidation states because
	(c) Ni			[Kurukshetra CEE 1998]
131.	$3d^{10}4s^0$ electronic configurati			(a) It is a transition metal
	(a) Zn^{++}	(b) Cu^{++}		(b) Of inert-pair effect
	(c) Cd^{++}	(d) Hg^{++}		(c) Of its high reactivity
132.	$3d^0 4s^0$ electronic configuration	on exhibits		(d) Of its amphoteric character
	(a) Pd^{+2}	(b) Sc^{+2}	144.	The test of ozone O_3 can be done by [AFMC 1997]
	14	(d) Zn^{+2}	•	
133.	(c) Ti^{++} Rare-earth elements are exhibited			(a) Ag (b) Hg
1331	(a) At. No. 58 to 71	(b) At. No. 21 to 30		(c) <i>Au</i> (d) <i>Cu</i>
	(c) At. No. 39 to 71	(d) At. No. 81 to 91	145.	Which of the following set of elements does not belong to
134.	All those elements belong to f -	block whose atomic numbers are		transitional elements set [EAMCET 1998]
	(a) 58 to 71	(b) 90 to 103		(a) Fe, Co, Ni (b) Cu, Ag, Au
	(c) Both (a) and (b)	(d) None		(c) Ti, Zr, Hf (d) Ga, In, Tl
135.	The correct order of density is		146.	The transition metals mostly are
	(a) $Cu > Ni > Zn > Sc$			[MP PMT 2000; Kerala (Med.) 2002]
	(b) $Ni > Cu > Zn > Sc$			(a) Diamagnetic
	(c) $Zn > Cu > Ni > Sc$			(b) Paramagnetic
	(d) $Sc > Zn > Ni > Cu$			(c) Neither diamagnetic nor paramagnetic
136.	The property exhibited by only t	ransitional elements	145	(d) Both diamagnetic and paramagnetic
	(a) To form paramagnetic com		147.	The correct statement in respect of <i>d</i> -block elements [MP PMT 2000, 02]
	(b) To form coloured compoun			(a) They are all metals
	(c) To form complex compound			(b) They show variable valency
	(d) To show inert tendency			(c) They form coloured ions and complex salts
137.		ve standard oxidation potential less		(d) All above statements are correct
.57.	than SHE		148.	Which one of the following is an example of non-typical transition elements [MP PMT 2002]
	(a) <i>Zn</i>	(b) <i>Cu</i>		elements [MP PMT 2002] (a) <i>Li, K, Na</i> (b) <i>Be, Al, Pb</i>
	(c) Fe	(d) <i>Ni</i>		(c) Zn , Cd , Hg (d) Ba , Ca , Sr
_	()	(-/ ···	149.	Which one is wrong in the following statements
138.	Hydrated Cu^{+2} ion will be			[Kurukshetra CET 2002]
	(a) Green	(b) Violet		(a) Gold is considered to be the king of metals
	(c) Blue	(d) Colourless		(b) Gold is soluble in mercury
139.	The placement of <i>Zn</i> , <i>Cd</i> elements is not proper because	and Hg along with 'd' block		(c) Copper is added to gold to make it hard(d) None of these
	(a) Their ' d ' orbitals are comp	pletely filled	150.	The number of unpaired electrons in $\ Cr^{3+}$ ion is
	•			

		[Kurukshetra C	ET 2002]		[MP PET 1994]
	(a) 3	(b) 5		(a) It has 5 electrons in $3a$	l and one electron in $4s$ orbitals
	(c) 4	(d) 1		(b) The principal quantum	numbers of its valence electrons are 3
151.	The metal ion which does no	•		and 4	
	(a) Chromium	[Kurukshetra C (b) Manganese	ET 2002]	(c) It has 6 electrons in $3a$	<i>l</i> orbital
	(c) Zinc	(d) Iron		(d) Its valance electrons have	ve quantum number ' l ' 0 and 2
152.	Super alloys are usually (a) Iron based	[Kurukshetra C	ET 2002] 165.	Zn and Hg belong to the their properties. The properties	ne same group, they differ in many of y that is shared by both is
	(b) Nickel based				[Pb. PMT 1998]
	(c) Cobalt based			(a) They form oxide readily	,
	(d) Based on all of these			(b) They react with steam 1	readily
153.		shows oxidation state from +	-2 to +7	(c) They react with hot cor	ncentrated sulphuric acid
	belong to group (a) VII B	(b) VI B		(d) They react with hot sod	lium hydroxide
	(a) VII B (c) 11 B	(d) 111 B	166.		nic species will impart colour to an
154.	Which of the following may b			aqueous solution	[CBSE PMT 1998; BHU 2001]
		[RPMT 1997; RPET/P	MT 1999]	(a) Ti^{4+}	(b) Cu^+
	(a) Cr^{+3}	(b) Cu^+		(c) Zn^{2+}	(d) Cr^{3+}
	(c) Fe^{+3}		167.	The number of electrons in	the outermost shell of the 3d-transition
155.	Which of the following ions i	. ,		elements generally remains	
133.		13			[MP PMT 1997]
	(a) Cu^+			(a) $(n-1)d^n$	(b) nd^n
	(c) Ti^{+3}	(d) Ti^{+4}		(c) ns^2	(d) $(n-1)s^2$
156.	Which of the following metal	s absorbs hydrogen	168.		riable oxidation states. What is the
	(a) <i>K</i>	(b) Al		maximum oxidation state sho	own by the element Mn
	(c) <i>Zn</i>	(d) <i>Pd</i>			[MP PMT 1997; JIPMER 2002]
157.	Which of the following ions i		HU 1997]	(a) $+4$	(b) + 5
	(a) Cu^+	(b) Cu^{2+}		(c) + 6	(d) + 7
	(c) Ti^{4+}	(d) V^{5+}	169.	Which of the following ions	gives coloured solution [MP PET 1995]
158.	The metal present in B_{12} is	[B	HU 1997]	(a) Cu^+	(b) Zn^{++}
	(a) Magnesium	(b) Iron	-		
	(c) Cobalt	(d) Manganese		(c) Ag^+	(d) Fe^{++}
159.	Which metal does not give	the following reaction $M + y$	170. vater or	Which metal represents more	
	steam \rightarrow oxide + $H \downarrow$	[РЬ. Р	MT 2001]	$(-)$ $\Lambda 1$	[CPMT 1990]
	(a) Mercury	(b) Iron		(a) Al	(b) Na
	(c) Sodium	(d) Magnesium		(c) Mg	(d) Fe
160.	lonisation potential values ionization potential value of	of <i>d-</i> block elements as comp <i>f-</i> block elements are	ared to 171.	[Pb. pmr 2001]	with increase in atomic number is a [AIEEE 2003] (b) <i>d</i> -block
	(a) Higher	(b) Equal		(a) High atomic masses(c) <i>f</i>-block	(d) Radioactive series
	(c) lower	(d) All of these	172.	Which one of the following	characteristics of the transition metals is
161.	Which one of the following p	roperties is not of transition ele	ments[MP PET 199	9; CPMT catalytic with their catalytic	c activity
	(a) Colour	(b) Paramagnetism			[CBSE PMT 2003]
	(c) Fixed valency	(d) None of the above		(a) Variable oxidation state	
162.	In which of the following, to ions is maximum	endency towards formation of a MP F	coloured 'ET 1999]	(b) High enthalpy of atomiz(c) Paramagnetic behaviour	
	(a) <i>s</i> -block elements	(b) <i>d</i> -block elements	,	(d) Colour of hydrated ions	
	(c) <i>p</i> -block elements	(d) <i>F</i> -block elements	173.		
16-	(<i>)</i>			(a) 4	(b) 6
163.	i ne electronic configuration	$1s^2, 2s^2p^6, 3s^2p^6d^6$ correspondence	onds to 'ET 1994]	(c) 3	(d) 8
	() M ²⁺	•	174.	Which of the following trans	itional metal has lowest density
	(a) Mn^{2+}	(b) Fe^{2+}		(a) <i>Sc</i>	(b) <i>Ti</i>
-	(c) Co	(d) Ge		(c) V	(d) <i>Cr</i>
164.	Which of the following s electronic configuration of ga	tatements is not correct ab seous chromium atom	out the 175.		nsitional metal has lowest boiling point
	electronic configuration of ga			(B.P.)	

	(a) Zn (b) Sc
176.	(c) $T\dot{r}$ (d) V Which of the following electronic configuration is that of a
170.	transitional element [NCERT 1983; CPMT 1989, 97; MP PET/PMT 1997; AIIMS 2000; MP PMT 2002]
	(a) $1s^2, 2s^2p^6, 3s^2p^6d^{10}, 4s^2p^6$
	(a) $1s^{2}, 2s^{2}p^{6}, 3s^{2}p^{6}d^{10}, 4s^{2}p^{1}$ (b) $1s^{2}, 2s^{2}p^{6}, 3s^{2}p^{6}d^{10}, 4s^{2}p^{1}$
	(b) $13,23p,33paa,43p$ (c) $1s^2,2s^2p^6,3s^2p^6d^2,4s^2$
	(d) $1s^2, 2s^2p^6, 3s^2p^6, 4s^2$
177.	Fe has been placed in the eighth group, the number of electrons in the outermost orbit is
	(a) 1 (b) 2
178.	(c) 3 (d) 4 Due to covalent bonding, the transitional metals are
170.	(a) Lustrous (b) Conductor
	(c) Hard and brittle (d) Ductile
179.	The magnetic moment of a metal ion of first transition series is 2.83
	BM . Therefore it will have unpaired electrons
	(a) 6 (b) 4 (c) 3 (d) 2
180.	Which of the following pair of ions may exhibit same colour
	(a) Cr^{+++} and Fe^{++}
	(b) Ti^{+++} and V^{++}
	(c) Fe^{+++} and Mn^{++}
	(d) Cu^+ and Ni^{++}
181.	The number of incomplete orbitals in inner transition element is
	(a) 2 (b) 3
	(c) 4 (d) 1
182.	Most common oxidation states of Cs (cesium) are
	[AIEEE 2002] (a) + 2, + 3 (b) + 2, + 4
183.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The $3d$ elements show variable oxidation states because the
183.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The $3d$ elements show variable oxidation states because the energies of the following sets of orbitals are almost similar
183.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The $3d$ elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd
	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$
183. 184.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The $3d$ elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd
	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest
	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons
	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons(a) $3d^6$ (b) $3d^7$
184.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons(a) $3d^6$ (b) $3d^7$ (c) $3d^8$ (d) $3d^9$ The 3d metal ions form coloured compounds because the energy corresponding to the following lies in the visible range of
184.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons(a) $3d^6$ (b) $3d^7$ (c) $3d^8$ (d) $3d^9$ The 3d metal ions form coloured compounds because the energy corresponding to the following lies in the visible range of electromagnetic spectrum
184.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons(a) $3d^6$ (b) $3d^7$ (c) $3d^8$ (d) $3d^9$ The 3d metal ions form coloured compounds because the energy corresponding to the following lies in the visible range of electromagnetic spectrum(a) Free energy change of complex formation by 3d metal ions
184.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons(a) $3d^6$ (b) $3d^7$ (c) $3d^8$ (d) $3d^9$ The 3d metal ions form coloured compounds because the energy corresponding to the following lies in the visible range of electromagnetic spectrum(a) Free energy change of complex formation by 3d metal ions (b) $d-d$ transitions of 3d electrons
184.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons(a) $3d^6$ (b) $3d^7$ (c) $3d^8$ (d) $3d^9$ The 3d metal ions form coloured compounds because the energy corresponding to the following lies in the visible range of electromagnetic spectrum(a) Free energy change of complex formation by 3d metal ions(b) $d-d$ transitions of 3d electrons(c) Heat of hydration of 3d metal ions
184.	(a) $+2, +3$ (b) $+2, +4$ (c) $+3, +4$ (d) $+3, +5$ The 3d elements show variable oxidation states because the energies of the following sets of orbitals are almost similar(a) $ns, (n-1)d$ (b) ns, nd (c) $(n-1)s, nd$ (d) $np, (n-1)d$ Which of the following 3d bivalent metal ions has the smallest number of unpaired d electrons(a) $3d^6$ (b) $3d^7$ (c) $3d^8$ (d) $3d^9$ The 3d metal ions form coloured compounds because the energy corresponding to the following lies in the visible range of electromagnetic spectrum(a) Free energy change of complex formation by $3d$ metal ions(b) $d-d$ transitions of $3d$ electrons(c) Heat of hydration of $3d$ metal ions(d) Ionisation energy of $3d$ metal ions

	(a)	ransition elements, the <i>s</i> - orbitals		<i>p</i> - orbitals	
	(a) (c)	<i>d</i> - orbitals	. ,	f - orbitals	
~~	. ,		()		
88.	Nur	nber of unpaired electr	ons in Mn		
	()	-	(1)	-	. PET/PMT 1999]
	(a)	3	(b)		
	(c)	4	(d)		
89.	Mei	cury is the only metal	which is liqu	and at $0^{o}C$. The formula of the transmission of transmission	nis is due to its[CBSE I
	(a)	Very high ionisation e	energy and v	veak metallic bo	ond
	(b)	Low ionisation potent	ial		
	(c)	High atomic weight			
	(d)	High vapour pressure			
90.	Esse	ential constituent of an	amalgam is		
			[DF	MT 1982; CPMT	1973, 77, 78, 89]
	(a)	lron	(b)	An alkali meta	1
	(c)	Silver	(d)	Mercury	
91.	Mei	cury is transported in	metal contai	ners made of	
		-			982; CPMT 1973]
	(a)	Silver	(b)	Lead	
	(c)	lron	(d)	Aluminium	
92.	The	electroplating of chror	nium is und	ertaken because	2
					[MP PMT 1994]
	(a)	Electrolysis of chromi	um is easier		L _
	(b)	Chromium can form a			
	(c)	Chromium gives prot metal	-		ng to the base
	(d)	Of the high reactivity [Pb. PMT 2001]	of metallic	chromium	
93.	An	element having the	electronic	configuration	$[Ar]3d^24s^2$
	belo	ongs to			[MP PMT 1993]
	(a)	<i>s</i> - block elements	(b)	p - block elem	ents
	(c)	d - block elements	(d)	f - block eleme	ents
94.	Wh	ich one of the following	; is not a tra	insition metal	
					[MP PMT 1999]
	(a)	Chromium	(b)	Titanium	
	(c)	Lead	(d)	Tungsten	
95.		atomic number of an		22. The highest	oxidation state
	exh	bited by it in its compo	ounds is		
	(.)	1	(1)	2	[MP PMT 1996]
	(a)	1	(b)		
~	(c)	3	(d)	4	
96.		ock elements form			
	(a)	lonic compounds			
	(b)	Covalent compounds	-		
	(c)	lonic and covalent co	•		
	(d)	Only complex compo			
97.	The	transition metals have	a less tende	ncy to form ion	is due to [Bihar CEE 19
	(a)	High ionisation energ			
	(b)	Low heat of hydration	1 of ion		
	(c)	High heat of sublimat	ion		
	(d)	All of these			
	(-)				
98.	. ,	electronic configuratio	n of Agat	om is	[CPMT 1984]

r www.studentbro.in

Get More Learning Materials Here : 📕

	(c) $[Kr]4d^{10}5s^1$ (d) $[Kr]4d^95s^2$		(c) 14 elements in the sixth period (atomic no. = 90 to 103) that
199.	Most powerful oxidizing property of manganese is shown by which		are filling 4 <i>f</i> sublevel (d) 14 elements in the seventh period (atomic no. = 90 to 103) that
	of the following oxidation state [MP PET 2003] (a) $Mn(+7)$ (b) $Mn(+2)$		are filling 4 <i>f</i> sublevel
	(a) $Mn(+7)$ (b) $Mn(+2)$	211.	Which of the following metals make the most efficient catalyst[BHU 1995]
	(c) $Mn(+4)$ (d) $Mn(+5)$		(a) Transition (b) Alkali
200.	Which one of the following ions is colourless		(c) Alkaline earth (d) Coloured metals
	[MP PET 1999; RPET/PMT 1999]	212.	Lanthanides and actinides resemble in [AFMC 2004]
	(a) Cu^+ (b) Co^{2+}		(a) Electronic configuration (b) Oxidation state
	(c) Ni^{2+} (d) Fe^{3+}		(c) Ionization energy (d) Formation of complexes
201.	The atomic radii of the elements are almost same of which series	213.	The lanthanide contraction relates to [Kerala PMT 2004]
	(a) $Fe - Co - Ni$ (b) $Na - K - Rb$		(a) Atomic radii
	(c) $F - Cl - Br$ (d) $Li - Be - B$		(b) Atomic as well as M^{3+} radii
202.	In human body if necessary, the plate, screw or wire used for		(c) Valence electrons
	surgery are made up of		(d) Oxidation states
	(a) Ni (b) Au		(e) lonisation energy
	(c) Pt (d) Ta	214.	Which of the following species is expected to show the highest
203.	Manganese is related to which block of periodic table		magnetic moment? (At. Nos.: <i>Cr</i> =24, <i>Mn</i> = 25, <i>Co</i> = 27, <i>Ni</i> = 28, <i>Cu</i> = 29) [Kerala PMT 2004]
	[MP PMT 2003] (a) s-block (b) p-block		
	(c) <i>d</i> -block (d) <i>f</i> -block		
204.	A hard and resistant metal (alloy) generally used in tip of nib of		(c) Cu^{2+} (d) Co^{2+}
	fountain pen is [BHU 1982]		(e) Ni^{2+}
	(a) Os.Ir (b) Pt.Cr	215.	Which one belongs to 3 <i>d</i> -transition series [MP PMT 2004]
	(c) V.Fe (d) Fe.Cr		(a) Copper (b) Gold
205.	Chloride of which of the following elements will be coloured		(c) Cobalt (d) Silver
	[MP PMT 1999] (a) Silver (b) Mercury	216.	Which one of the following organisation's iron and steel plant was built to use charcoal as a source of power, to start with, but later
	(c) Zinc (d) Cobalt		switched over to hydroelectricity
206.	Which of the following ions has the highest magnetic moment[JIPMER 19	97; AIEEE	
	(a) Ti^{3+} (b) Sc^{3+}		(a) The Tata Iron and Steel Company(b) The Indian Iron and Steel Company
	(c) Mn^{2+} (d) Zn^{2+}		(c) Mysore Iron and Steel Limited
207.	Cerium $(Z = 58)$ is an important member of the lanthanoids.		
-	Certain $(Z = 50)$ is an important member of the faithanolds.		(d) Hindustan Steel Limited
	Which of the following statements about cerium is incorrect [AIEEE 200	94] 217.	(d) Hindustan Steel Limited Which of the following is the correct sequence of atomic weights of
	· · ·	94] 217.	
	Which of the following statements about cerium is incorrect [AIEEE 200	94] 217.	Which of the following is the correct sequence of atomic weights of
	 Which of the following statements about cerium is incorrect [AIEEE 2000 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state 	94] 217.	Which of the following is the correct sequence of atomic weights of given elements [Pb. CET 2002]
	 Which of the following statements about cerium is incorrect [AIEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 	14] 217. 218.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation
	 Which of the following statements about cerium is incorrect [AIEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent 		Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002]
208.	 Which of the following statements about cerium is incorrect [AIEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the 		Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti
208.	 Which of the following statements about cerium is incorrect [AIEEE 2000 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them 	218.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn
208.	 Which of the following statements about cerium is incorrect [AIEEE 2007 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them 		Which of the following is the correct sequence of atomic weights of given elements[Pb. CET 2002](a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration
208.	Which of the following statements about cerium is incorrect [AIEEE 2000(a) The +4 oxidation state of cerium is not known in solutions(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state(c) The common oxidation states of cerium are +3 and +4(d) Cerium (IV) acts as an oxidizing agentOf the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them[AIEEE 2004](a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$	218.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ [DCE 2002]
208.	 Which of the following statements about cerium is incorrect [AIEEE 2007 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them 	218.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ (b)of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ [DCE 2002](a) s -block element(b) d -block element
208. 209.	Which of the following statements about cerium is incorrect [AIEEE 2000(a) The +4 oxidation state of cerium is not known in solutions(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state(c) The common oxidation states of cerium are +3 and +4(d) Cerium (IV) acts as an oxidizing agentOf the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them[AIEEE 2004](a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$	218.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ [DCE 2002](a) s -block element(b) d -block element(c) p -block element(d) None of these
	Which of the following statements about cerium is incorrect [AIEEE 200(a) The +4 oxidation state of cerium is not known in solutions(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state(c) The common oxidation states of cerium are +3 and +4(d) Cerium (IV) acts as an oxidizing agentOf the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them[AIEEE 2004](a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$	218.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ (b)of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ [DCE 2002](a) s -block element(b) d -block element
	Which of the following statements about cerium is incorrect [AIEEE 200(a) The +4 oxidation state of cerium is not known in solutions(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state(c) The common oxidation states of cerium are +3 and +4(d) Cerium (IV) acts as an oxidizing agentOf the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them[AIEEE 2004](a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where	218. 219.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ [DCE 2002](a) s -block element(b) d -block element(c) p -block element(d) None of these
	Which of the following statements about cerium is incorrect [AIEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them [AIEEE 2004] (a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is [CBSE PMT 2004]	218. 219.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ (c) p -block element(d) None of theseIdentify the transition element(d) $1s^2, 2s^2 2p^6, 3s^2, 3p^6, 4s^2$
	Which of the following statements about cerium is incorrect [AIEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them [AIEEE 2004] (a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is	218. 219.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ (c) p -block element(d) None of theseIdentify the transition element(d) $1s^2, 2s^2 2p^6, 3s^2, 3p^6, 4s^2$ (b) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^2, 4s^2$
209.	Which of the following statements about cerium is incorrect [AlEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them [AlEEE 2004] (a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is [CBSE PMT 2004] (a) Ti^{4+} , V^{3+} , Cr^{2+} , Mn^{3+} (b) Ti^{2+} , V^{3+} , Cr^{4+} , Mn^{5+} (c) Ti^{3+} , V^{2+} , Cr^{3+} , Mn^{4+} (d) Ti^+ , V^{4+} , Cr^{6+} , Mn^{7+}	218. 219.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ (c) p -block element(d) None of theseIdentify the transition element(d) $1s^2, 2s^2 2p^6, 3s^2, 3p^6, 4s^2$ (e) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^{2}, 4s^2$ (c) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^{10}, 4s^2 4p^2$
	Which of the following statements about cerium is incorrect [AlEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them [AlEEE 2004] (a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is [CBSE PMT 2004] (a) $Ti^{4+}, V^{3+}, Cr^{2+}, Mn^{3+}$ (b) $Ti^{2+}, V^{3+}, Cr^{4+}, Mn^{5+}$	218. 219.	Which of the following is the correct sequence of atomic weights of given elements(a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential[Pb. CET 2002](a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ (c) p -block element(d) None of theseIdentify the transition element(d) $1s^2, 2s^2 2p^6, 3s^2, 3p^6, 4s^2$ (b) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^2, 4s^2$
209.	Which of the following statements about cerium is incorrect [AlEEE 200(a) The +4 oxidation state of cerium is not known in solutions(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state(c) The common oxidation states of cerium are +3 and +4(d) Cerium (IV) acts as an oxidizing agentOf the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them[AIEEE 2004](a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is[CBSE PMT 2004](a) $Ti^{4+}, V^{3+}, Cr^{2+}, Mn^{3+}$ (b) $Ti^{2+}, V^{3+}, Cr^{4+}, Mn^{5+}$ (c) $Ti^{3+}, V^{2+}, Cr^{3+}, Mn^{4+}$ (d) $Ti^+, V^{4+}, Cr^{6+}, Mn^{7+}$ Lanthanoids are[CBSE PMT 2004]	218. 219.	Which of the following is the correct sequence of atomic weights of given elements [Pb. CET 2002] (a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential [Pb. CET 2002] (a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ [DCE 2002] (a) s -block element (b) d -block element (c) p -block element (d) None of these Identify the transition element [MH CET 2003] (a) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6 3d^{2}$, $4s^2$ (b) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6 3d^{10}$, $4s^2 4p^2$ (c) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6 3d^{10}$, $4s^2 4p^1$ What is the name of element with atomic number 105
209.	Which of the following statements about cerium is incorrect [AlEEE 200(a) The +4 oxidation state of cerium is not known in solutions(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state(c) The common oxidation states of cerium are +3 and +4(d) Cerium (IV) acts as an oxidizing agentOf the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them[AIEEE 2004](a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is[CBSE PMT 2004](a) $Ti^{4+}, V^{3+}, Cr^{2+}, Mn^{3+}$ (b) $Ti^{2+}, V^{3+}, Cr^{4+}, Mn^{5+}$ (c) $Ti^{3+}, V^{2+}, Cr^{3+}, Mn^{4+}$ (d) $Ti^+, V^{4+}, Cr^{6+}, Mn^{7+}$ Lanthanoids are[CBSE PMT 2004](a) 14 elements in the sixth period (atomic no. = 58 to 71) that are filling 4f sublevel(b) 14 elements in the seventh period (atomic no. = 58 to 71) that	218. 219. 220.	Which of the following is the correct sequence of atomic weights of given elements [Pb. CET 2002] (a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential [Pb. CET 2002] (a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ [DCE 2002] (a) s -block element (b) d -block element (c) p -block element (d) None of these Identify the transition element [MH CET 2003] (a) $1s^2, 2s^2 2p^6, 3s^2, 3p^6, 4s^2$ (b) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^{10}, 4s^2 4p^2$ (c) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^{10}, 4s^2 4p^1$ What is the name of element with atomic number 105 [CPMT 2004]
209.	Which of the following statements about cerium is incorrect [AIEEE 200 (a) The +4 oxidation state of cerium is not known in solutions (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state (c) The common oxidation states of cerium are +3 and +4 (d) Cerium (IV) acts as an oxidizing agent Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them [AIEEE 2004] (a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is [CBSE PMT 2004] (a) $Ti^{4+}, V^{3+}, Cr^{2+}, Mn^{3+}$ (b) $Ti^{2+}, V^{3+}, Cr^{4+}, Mn^{5+}$ (c) $Ti^{3+}, V^{2+}, Cr^{3+}, Mn^{4+}$ (d) $Ti^+, V^{4+}, Cr^{6+}, Mn^{7+}$ Lanthanoids are [CBSE PMT 2004] (a) 14 elements in the sixth period (atomic no. = 58 to 71) that are filling 4f sublevel	218. 219. 220.	Which of the following is the correct sequence of atomic weights of given elements [Pb. CET 2002] (a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential [Pb. CET 2002] (a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3p^6 3d^{10} 4s^1$ [DCE 2002] (a) s -block element (b) d -block element (c) p -block element (d) None of these Identify the transition element [MH CET 2003] (a) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6 3d^{2}$, $4s^2$ (b) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6 3d^{10}$, $4s^2 4p^2$ (c) $1s^2$, $2s^2 2p^6$, $3s^2$, $3p^6 3d^{10}$, $4s^2 4p^1$ What is the name of element with atomic number 105 [CPMT 2004] (a) Kurchatovium (b) Dubnium
209.	Which of the following statements about cerium is incorrect [AlEEE 200(a) The +4 oxidation state of cerium is not known in solutions(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state(c) The common oxidation states of cerium are +3 and +4(d) Cerium (IV) acts as an oxidizing agentOf the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them[AIEEE 2004](a) $(n-1)d^3ns^2$ (b) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^1$ (c) $(n-1)d^8ns^2$ (d) $(n-1)d^5ns^2$ Among the following series of transition metal ions, the one where all metals ions have $3d^2$ electronic configuration is[CBSE PMT 2004](a) $Ti^{4+}, V^{3+}, Cr^{2+}, Mn^{3+}$ (b) $Ti^{2+}, V^{3+}, Cr^{4+}, Mn^{5+}$ (c) $Ti^{3+}, V^{2+}, Cr^{3+}, Mn^{4+}$ (d) $Ti^+, V^{4+}, Cr^{6+}, Mn^{7+}$ Lanthanoids are[CBSE PMT 2004](a) 14 elements in the sixth period (atomic no. = 58 to 71) that are filling 4f sublevel(b) 14 elements in the seventh period (atomic no. = 58 to 71) that	218. 219. 220.	Which of the following is the correct sequence of atomic weights of given elements [Pb. CET 2002] (a) $Fe > Co > Ni$ (b) $Ni > Co > Fe$ (c) $Co > Ni > Fe$ (d) $Fe > Ni > Co$ Which of the following element has maximum first ionisation potential [Pb. CET 2002] (a) V (b) Ti (c) Cr (d) Mn A metal M having electronic configuration $M - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ [DCE 2002] (a) s -block element (b) d -block element (c) p -block element (d) None of these Identify the transition element [MH CET 2003] (a) $1s^2, 2s^2 2p^6, 3s^2, 3p^6, 4s^2$ (b) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^{10}, 4s^2 4p^2$ (c) $1s^2, 2s^2 2p^6, 3s^2, 3p^6 3d^{10}, 4s^2 4p^1$ What is the name of element with atomic number 105 [CPMT 2004]

r www.studentbro.in

222.	Electrons in a paramagnetic compound are [UPSEAT 2004]	235.
	(a) Shared (b) Unpaired	
	(c) Donated (d) Paired	
223.	Which of the following pairs involves isoelectronic ions [UPSEAT 2004]	
	(a) Mn^{3+} and Fe^{2+} (b) Mn^{2+} and Fe^{3+}	
	(a) Mn^{-3} and Pe^{-1} (b) Mn^{-3} and Pe^{-2} (c) Cr^{3+} and Mn^{2+} (d) Fe^{2+} and Co^{2+}	236.
224.	(c) <i>Cr</i> and <i>Mn</i> (d) <i>Fe</i> and <i>Co</i> Which of the following is paramagnetic [Pb. CET 2000]	230.
	(a) Ni^{++} (b) Cu^+	
	(a) N' (b) Cu (c) Zn^{++} (d) Sc^{+++}	
225.	(c) Zn^{-1} (d) Sc^{-1} The electronic configuration of chromium is	
22.).	[BHU 2005; Pb. CET 2000]	
	(a) $[Ne]3s^2 3p^6 3d^4, 4s^2$ (b) $[Ne]3s^2 3p^6 3d^5, 4s^1$	
	(c) $[Ne]3s^2 3p^6 3d^6, 4s^1$ (d) $[Ne]3s^2 3p^5 3d^5, 4s^2$	237.
226.	Electronic configuration of $Cu(Z = 29)$ is [Pb. CET 2001]	
	(a) $[Ar]3d^9 4s^2$ (b) $[Ar]3d^{10} 4s^1$	
	(a) $[Ar]3d^{5}4s^{2}$ (b) $[Ar]3d^{6}4s^{2}$ (c) $[Ar]3d^{5}4s^{2}$ (d) $[Ar]3d^{6}4s^{2}$	238.
227.	(c) [A7]5 <i>u</i> 4 <i>s</i> (d) [A7]5 <i>u</i> 4 <i>s</i> (e-58 is a member of [Pb. CET 2002]	
227.	(a) <i>s</i> -block (b) <i>p</i> -block	
	(c) <i>d</i> -block (d) <i>f</i> -block	239.
228.	How many unpaired electrons are there in Ni^{2+}	239.
	[MP PET 2004]	
	(a) 2 (b) 4	240.
229.	(c) 5 (d) 0 The main reason for larger number of oxidation states exhibited by	- •
229.	the actinoids than the corresponding lanthanoids is [CBSE PMT 2005]	
	(a) Lesser energy difference between $5f$ and $6d$ orbitals than between $4f$ and $5d$ orbitals	241.
	(b) Larger atomic size of actinoids than the lanthanoids	
	(c) More energy difference between $5f$ and $6d$ orbitals than between $4f$ and $5d$ orbitals	
	$(d) \mbox{Greater reactive nature of the actinoids than the lanthanoids}$	
230.	Four successive members of the first row transition elements are listed below with their atomic numbers. Which one of them is expected to have the highest third ionization enthalpy [CBSE PMT 200	5]
	(a) Vanadium ($Z = 23$) (b) Chromium ($Z = 24$)	-,
	(c) Iron $(Z = 26)$ (d) Manganese $(Z = 25)$	
231.	The aqueous solution containing which one of the following ions will be colourless [CBSE PMT 2000, 05]	
	(a) Sc^{3+} (b) Fe^{2+}	
	(c) Ti^{3+} (d) Mn^{2+}	
	(Atomic number <i>Sc</i> = 21, <i>Fe</i> = 26, <i>Ti</i> = 22, <i>Mn</i> = 25)	
232.	Which of the following trivalent ion has the largest atomic radii in the lanthanide series [BHU 2002]	
	(a) La (b) Ce	
	(c) <i>Pm</i> (d) <i>Lu</i>	_
233.	Which of the following does not have valence electron in $3d$ -subshell[A (a) Fe (III) (b) Mn (II)	11MS 2002]
	(a) $Pe(m)$ (b) $Pm(m)$ (c) $Cr(1)$ (d) $P(0)$	
234.	Among the following pairs of ions, the lower oxidation state in	
	aqueous solution is more stable than the other in [AIIMS 2005]	
	(a) Tl^+, Tl^{3+} (b) Cu^+, Cu^{2+}	
	(a) Ir , Ir (b) Cu^{2+} , Cu^{3+} (c) Cr^{2+} , Cr^{3+} (d) V^{2+} , VO^{2+}	
	$(c) cr , cr \qquad (a) r , rO$	

235.	The lanthanide contraction is responsible for the fact that
	[AIEEE 2005]
	(a) Zr and Y have about the same radius
	(b) Zr and Nb have similar oxidation state
	(c) Zr and Hf have about the same radius
	(d) Zr and Zn have the same oxidation sate
236.	Which of the following factors may be regarded as the main cause of lanthanide contraction [AIEEE 2005]
	(a) Poor shielding of one of $4f$ electron by another in the subshell
	(b) Effective shielding of one of $4f$ electrons by another in the subshell
	(c) Poorer shielding of $5d$ electrons by $4f$ electrons
	(d) Greater shielding of $5d$ electron by $4f$ electrons
237.	Which of the following have maximum number of unpaired
	electrons [BHU 2005]
238.	Transition metals show paramagnetism [BHU 2005]
	(a) Due to characteristic configuration
	(b) High lattice energy
	(c) Due to variable oxidation states
	(d) Due to unpaired electrons
239.	Which of the following pairs of elements cannot form an alloy [KCET 2005]
	(a) Zn, Cu (b) Fe, Hg
	(c) Fe, C (d) Hg, Na
240.	Which belongs to the actinides series [] & K 2005]
	(a) <i>Ce</i> (b) <i>Cf</i>
	(c) <i>Ca</i> (d) <i>Cs</i>
241.	Effective magnetic droment of Sc^{+3} ion is [Kerala CET 2005]
	(a) 1.73 (b) 0
	(c) 5.92 (d) 2.83

(c) 5.92(e) 3.87

Get More Learning Materials Here : 📕

Compounds of Transitional elements

Potassium permanganate acts as an oxidant in neutral, alkaline as 1. well as acidic media. The final products obtained from it in the three conditions are, respectively

(a)
$$MnO_2, MnO_2, Mn^{2+}$$
 (b) $MnO_4^{2-}, Mn^{3+}, Mn^{2+}$
(c) $MnO_2, MnO_4^{2-}, Mn^{3+}$ (d) MnO, MnO_4, Mn^{2+}
In acidia medium one mole of MnO_4^{--} accents how more mole of

- 2. In acidic medium one mole of MnO_4^- accepts how many moles of electrons in a redox process ? [MP PET/PMT 1998] (a) 1 (b) 3
 - (d) 6 (c) 5 In acidic medium potassium dichromate acts as an oxidant according

3.

- to the equation, $Cr_2 O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$. What is the equivalent weight of $K_2 Cr_2 O_7$? (mol. Wt. = M)
 - [MP PET/PMT 1998] (b) *M* / 2 (a) *M*
 - (c) M/3(d) M/6
- The correct formula of permanganic acid is [MP PET 1999] 4 (b) $HMnO_5$ (a) $HMnO_{4}$
 - (c) $H_2 MnO_4$ (d) $H_2 MnO_3$
- Acidified potassium dichromate is treated with hydrogen sulphide. In 5 the reaction, the oxidation number of chromium [MP PET 1996]
 - (a) Increases from + 3 to + 6 (b) Decreases from +6 to +3 (c) Remains unchanged (d) Decreases from +6 to +2
- When $KMnO_4$ reacts with acidified $FeSO_4$ 6. [MP PET 1996]
 - (a) Only $FeSO_4$ is oxidised
 - (b) Only $KMnO_4$ is oxidised
 - (c) $FeSO_4$ is oxidised $KMnO_4$ and is reduced
 - (d) None of these
- When calomel reacts with NH_4OH , we get 7.
- [CBSE PMT 1996] (b) $NH_2 - Hg - Hg - Cl$ (a) $HgNH_2Cl$ (c) Hg_2O (d) HgOAgCl dissolves in a solution of NH_3 but not in water because [MP PMT 1984, 86]) Its reduction to metallic silver 8. (a) NH_3 is a better solvent than H_2O (b) Ag^+ forms a complex ion with NH_3 (c) NH_3 is a stronger base than H_2O (d) The dipole moment of water is higher than NH_3 In solid $CuSO_4.5H_2O$ copper is co-ordinated to 9. [MP PET 1985, 86] (a) Five water molecules (b) Four water molecules (c) One sulphate anion (d) One water molecule
- A white powder soluble in NH_4OH but insoluble in water is [AFMC 1987]²⁴. 10. (a) $BaSO_{4}$ (b) $CuSO_4$ (c) $PbSO_4$ (d) AgCl

- Verdigris is [BHU 1987] 11. (b) Basic lead acetate (a) Basic copper acetate (c) Basic lead (d) None of these Number of moles of $K_2 Cr_2 O_7$ reduced by one mole of Sn^{2+} ions 12. [KCET 1996] is (a) 1/3 (b) 3 (d) 6 (c) 1.6 Which one of the following is reduced by hydrogen peroxide in acid 13. [EAMCET 1997] medium Potassium permanganate (a) Potassium iodide (b) Ferrous sulphate (c) (d) Potassium ferrocyanide Which oxide of manganese is amphoteric [AFMC 1995] 14. MnO_2 (b) Mn_2O_3 (a) (d) MnO (c) Mn_2O_7 Which one of the following oxides is ionic [IIT-JEE 1995] 15. (b) Mn_2O_7 (a) MnO (c) CrO_3 (d) P_2O_5 Correct formula of **calomel** is [CPMT 1994; AFMC 1998] 16. (a) Hg_2Cl_2 (b) $HgCl_2$ (c) $HgCl_2.H_2O$ (d) $HgSO_4$ One of the important use of ferrous sulphate is in the 17. (a) Manufacture of blue black ink Manufacture of chalks (b) Preparation of hydrogen sulphide (c) (d) Preparation of anhydrous ferric chloride 18. Copper sulphate is not used (a) In electrotyping (b) In dyeing and calicoprinting (c) In detecting water (d) As fertilizer Blue vitriol is [AFMC 1992] 19. (b) $CuSO_4.5H_2O$ (a) $CuSO_4$ (c) Cu_2SO_4 (d) $CuSO_4.H_2O$ A solution of copper sulphate may be kept safely in the container 20. made up of (a) *Fe* (b) Ag (c) Zn (d) *Al* 21. Silver nitrate produces a black stain on skin due to
 - (a) Being a strong reducing agent (b) Its corrosive action
 - Formation of complex compound (c)

 - When hypo solution is added to cupric sulphate solution, the blue colour of the latter is discharged, due to formation of
 - (a) CuS_2O_3 (b) $Na_2S_4O_6$
 - (c) $NaCuS_2O_3$ (d) Cu_2O
- Metal oxides which decomposes on heating is 23. [MNR 1984; UPSEAT 1999]
 - (a) ZnO (b) Al_2O_3 (c) CuO (d) Na_2O
 - (e) HgO
 - Anhydrous sample of ferric chloride is prepared by heating
 - (a) Fe + HCl
 - (c) $FeCl_2 + Cl_2$ (d) Hydrated ferric chloride

(b) $Fe + Cl_2$

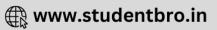
Get More Learning Materials Here : 📕

CLICK HERE

22.

25.	Light green crystals of ferrous	s sulphate lose water molecule and turn		(a) $20ml$ of 0.5 $M C_2 H_2$	$,O_A$	
	brown on exposure to air. Thi			(b) $50ml$ of 0.1 $M C_2 H_2$		
	(a) Fe_2O_3	(b) $Fe_2O_3.H_2O$		(c) 50ml of 0.5 $M C_2 H_2$		
	(c) $Fe(OH)SO_4$	(d) $Fe_2O_3 + FeO$				
26.	In alkaline condition KMnO	4, reacts as follows :	-0	(d) $20ml$ of 0.1 MC_2H_2		
	$2KMnO_4 + 2KOH \rightarrow 2K$	$T_2 MnO_4 + H_2 O + O$	38.	The equivalent weight of police	tassium permanganate for acid solu [MP PET ۱۹]	
	Therefore its equivalent weigh			(a) 158	(b) 31.6	,
	(a) 21 F	[NCERT 1974; CPMT 1977; DCE 2002]		(c) 52.16	(d) 79	_
	(a) 31.5 (c) 72.0	(b) 52.7 (d) 158.0	39.	Which statement is not corre		999]
27.	Equivalent weight of KMn	aO_4 acting as an oxidant in acidic		(b) Potassium permanganat	e is a powerful oxidising substance e is a weaker oxidising substance t	than
	medium is equal to (a) Molecular weight of <i>KN</i>	[CPMT 1990; MP PMT 1999] InO_4			e is a stronger oxidising substance t	than
	(b) $\frac{1}{2} \times \text{Molecular weight o}$	f <i>KMnO</i> 4			oxidises a secondary alcohol inte	o a
	2		40.	ketone The formula of corrosive sub	imate is [CPMT 1	997]
	(c) $\frac{1}{3} \times$ Molecular weight o	f KMnO ₄	101	(a) $HgCl_2$	(b) Hg_2Cl_2	557]
	1			(c) Hg_2O	(d) Hg	
	(d) $\frac{1}{5} \times$ Molecular weight o	f KMnO ₄	41.	Which is mild oxidising agent	() 0	1971]
28.	In which of the following ioni	c radii of chromium would be smallest[A	-		(b) $KMnO_4$	
	(a) $K_2 CrO_4$	(b) <i>CrO</i> ₂		(c) $K_2 C r_2 O_7$	(d) Cl_2	
	(c) $CrCl_3$	(d) CrF_2	42.	The equivalent weight of K_2		
29 .	$CoO.Al_2O_3$ is called			(a) 294	(b) 298	
	(a) Cobalt aluminate	(b) Thenard's blue		(c) 49	(d) 50	
	(c) Both (a) and (b)	(d) None of these	43.		of 111-B group is isomorphic v	with
30.	ZnO.CoO is called			$Al_2(SO_4)_3$. Therefore the		
	(a) Cobalt zincate	(b) Rinman's green		(a) Purple(c) White	(b) Blue	
21	(c) Both (a) and (b) $E_{a}SO_{a}(NH_{a}) SO_{a}GH_{a}$	(d) None of these	44.	A copper salt is isomorphic v	(d) Uncertain (d) $ZnSQ$ the solt will be	
31.	$FeSO_4.(NH_4)_2SO_4.6H_2$ (a) Mohr's salt			(a) Paramagnetic	(b) Diamagnetic	
	(a) Mohr's salt (c) Alum	(b) Green salt (d) Glauber's salt		(c) Ferromagnetic	(d) None	
32.	Molybdenum compounds are		45.	V_2O_5 is useful as catalyst in	1	
	(a) Dye industry	(b) For colouring leather		(a) Manufacture of H_2SO		
	(c) For colouring rubber	(d) All of these		(b) Manufacture of HNO_3		
33.	when copper turnings and copper sulphate the compoun	concentrated <i>HCl</i> is heated with d formed is [CPMT 1984]		(c) Manufacture of Na_2Co		
	(a) Cupric chloride	(b) Cuprous chloride		(d) It is not a catalyst	<i>y</i> ₃	
	(c) Copper sulphate	(d) SO_2	46.	$KMnO_4$ in basic medium is	s reduced to [Orissa JEE 20	005]
34.	The compound of copper whi	ch turns green on keeping in air is [CPM	-	(a) $K_2 M n O_4$	(b) MnO_2	000]
	(a) Copper sulphate	(b) Copper nitrate		2 .	. , 2	
~~	(c) Cupric chloride	(d) Cuprous chloride		(c) $Mn(OH)_2$	(d) Mn^{2+}	
35.	Cu_2Cl_2 with HCl in prese		47.	When $KMnO_4$ is reduced	with oxalic acid in acidic solution,	the
	(a) $CuCl_2$	[CPMT 1984] (b) H ₂ CuCl ₂		oxidation number of Mn ch	e	0901
	(c) Hydrogen gas	(d) Chlorine gas		(a) 7 to 4	נר (CPMT) (b) 6 to 4	909]
36.	$K_2 Cr_2 O_7$ on heating with a	· · · ·		(c) 7 to 2	(d) 4 to 2	
50.		[CBSE PMT 1997]	48.	Nesseler's reagent is	MD DET 1001. MD DMT 1000. ATMC 1	2001
	(a) CrO_4^{2-}	(b) <i>Cr(OH</i>) ₃		(a) $K_2 Hg I_4$	[MP PET 1991; MP PMT 1993; AFMC 2 (b) $K_2HgI_4 + KOH$	2001]
				(a) K_2HgI_4 (c) $K_2HgI_2 + KOH$		
	(c) $Cr_2O_7^{2-}$	(d) $Cr(OH)_2$	49.	(c) $K_2 II g I_2 + K O II$ When ammonium dichromate		
37.		acid according to the equation :	43.		[MP PMT 1993; IIT-JEE 19	999]
	$2MnO_4^- + 5C_2O_4^{2-} + 16H$	$T^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$		(a) <i>N</i> ₂	(b) <i>O</i> ₂	
	Here 20 ml of 0.1 M KMnO	4 is equivalent to		(c) H_2	(d) NH_3	
		[CBSE PMT 1996]	50.	•	nate on reacting with a sulphite	e is
				reduced to		

r www.studentbro.in


	(a) CrO_2Cl_2	(b) CrO_4^{2-}		(a) Cupric oxide is precipitated
	2 2	(b) CrO_4 (d) Cr^{2+}		(b) Metallic copper is precipitated
				(c) Cuprous iodide is precipitated with liberation of iodine
51.	The product of oxidation of I^{-} is	ion by MnO_4^- in alkaline medium	64.	(d) No change occursWhich of the following statements is correct about equivalent weight
		(b) IO_{3}^{-}		of <i>KMnO</i> ₄ [MP PET 1994]
	(a) <i>I</i> ₂	-		(a) It is one third of its molecular weight in alkaline medium
	(c) IO_4^-	(d) I_3^-		(b) It is one fifth of its molecular weight in alkaline medium
52.	Identify the statement which sulphate	is not correct regarding copper [UPSEAT 2000, 01]		 (c) It is equal to its molecular weight in acidic medium (d) It is one third of its molecular weight in acidic medium
	(a) It reacts with <i>KI</i> to give io	• •	65.	The reaction of $K_2Cr_2O_7$ with $NaCl$ and conc. H_2SO_4 gives[MP PET 199
	(b) It reacts with KCI to give	Cu_2Cl_2		(a) $CrCl_3$ (b) $CrOCl_2$
	(c) It reacts with <i>NaOH</i> and g	lucose to give Cu_2O		(c) CrO_2Cl_2 (d) Cr_2O_3
	(d) It give CuO on strong hear		66.	Silver nitrate is supplied in coloured bottles because it is
53.	Acidified potassium permangan (a) Bleaching powder	ate solution is decolourised by[MNR 1984] (b) White vitriol		[CPMT 1985]
	(c) Mohr's salt	(d) Microcosmic salt		(a) Oxidised in air
	(e) Laughing gas			(b) Decomposes in sunlight(c) Explosive in sunlight
54.	Which of the following oxide heating	s is white but becomes yellow on [MP PET 1995]		(d) Reactive towards air in sunlight
	(a) AgO	(b) Ag_2O	67.	A nitrate when mixed with common salt gives a white precipitate
	(c) FeO	(d) ZnO		which is soluble in dilute NH_4OH . It is the nitrate of [CPMT 1985]
55.	Amalgams are	(-)		(a) Copper(b) Mercury(c) Silver(d) Gold
	(a) Highly coloured alloys		68.	Which one of the following is lunar caustic [CPMT 1984]
	(b) Always solid			(a) $AgNO_3$ (b) Cu_2Cl_2
	(c) Alloys which contain merc(d) Alloys which have great re	-		(c) $CuCl_2$ (d) Hg_2Cl_2
56.	In photography sodium thiosult		69.	Invar, an alloy of <i>Fe</i> and <i>Ni</i> is used in watches and meter scale, its
		[DPMT 2005]	• .	characteristic property is [Kerala (Engg.) 2002]
	(a) Complexing agent	(b) Oxidising agent		(a) Small coefficient of expansion
57.	(c) Reducing agentThe substance that sublimes on	(d) None of these heating		(b) Resistance to corrosion
57.		[EAMCET 1978, 82; MP PMT 1999]		(c) Hardness and elasticity(d) Magnetic nature
	(a) Magnesium chloride	(b) Silver chloride	70.	The extraction of nickel involves
-0	(c) Mercurous chloride $K \begin{bmatrix} F_{1}(CN) \end{bmatrix}$: 1	(d) Sodium chloride		(a) The formation of $Ni(CO)_4$
58.	$K_3[Fe(CN)_6]$ is called			(b) The decomposition of $Ni(CO)_4$
	(a) Potassium ferricyanide(b) Red prussiate of potash			
	(c) Potassium hexacyanoferrat	e (III)		(c) The formation and thermal decomposition of $Ni(CO)_4$
	(d) All of these			(d) The formation and catalytic decomposition of $Ni(CO)_4$
59.	Which of the following will sh magnetic field	ow increase in weight when kept in	71.	On adding excess of NH_3 solution to $CuSO_4$ solution, the dark
	(a) TiO_2	(b) $Fe_2(SO_4)_3$		blue colour is due to [CPMT 1990; A11MS 1982; MP PMT 1989, 92; BHU 1996;
	(c) $KMnO_4$	(d) $ScCl_3$		[CINIT 1996, AINNE 1962, NIT 1969, 92, DID 1996, JIPMER 1997]
60.	Amongst $TiF_6^{2-}, CoF_6^{3-}, Cu_2$	Cl_2 and $NiCl_4^{2-}$ (Atomic number		(a) $[Cu(NH_3)_4]^{++}$ (b) $[Cu(NH_3)_2]^{++}$
	Ti = 22, Co = 27, Cu = 27,	= 29, $Ni = 28$). The colourless		r 7.
	species are	[CBSE PMT 1995]		• • • • • • • • • • • • • • • • • • •
	(a) CoF_6^{3-} and $NiCl_4^{2-}$	(b) TiF_6^{2-} and CoF_6^{3-}	72.	If <i>M</i> is the molecular weight of $KMnO_4$, its equivalent weight will
	(c) Cu_2Cl_2 and $NiCl_4^{2-}$	(d) TiF_6^{2-} and Cu_2Cl_2		be when it is converted into $K_2 MnO_4$
61.	Which of the following imparts	<i>c</i>		[MP PET 1993] (a) <i>M</i> (b) <i>M</i> /3
	(a) C_{H} O	[CPMT 1993] (b) <i>CdS</i>		(c) <i>M</i> /5 (d) <i>M</i> /7
	(a) Cu_2O		73.	While writing the formula of ferrous oxide it is written as (FeO) ,
62	(c) MnO_2 On the heating conner nitrate s	 (d) Cr₂O₃ trongly, is finally obtained[CPMT 1971, 		because it is
62.	(a) Copper	(b) Copper oxide	/4, /0]	(a) Non-stoichiometric (b) Non-existant
	(c) Copper nitrate	(d) Copper nitride	74	(c) Paramagnetic (d) Ferromagnetic Which of the following exhibit maximum oxidation state of
63.	On adding <i>KI</i> to a solution of co		74.	vanadium
		[CPMT 1973; NCERT 1977; MP PMT 1989]		

》

	(a) VOCl ₃	(b)	VCl_4
	(c) VCl_3		VCl ₂
75.	Prussian blue is due to the formation		-
70.	[BHU 1980; CB		T 1990; KCET 1992; MP PET 1995]
			$Fe_2[Fe(CN)_6]$
	(c) $Fe_3[Fe(CN)_6]$	(d)	$Fe[Fe(CN)_6]_3$
76.	The Nesseler's reagent contains		
	(a) Hg_2^{++}		T 1987; MP PMT 1985; BHU 1996]
	() 02		Hg^{++}
	(c) $HgI_2^{}$	(d)	$HgI_4^{}$
77.	Formula of ferric sulphate is	(1)	[AFMC 2003]
	(a) $FeSO_4$		$Fe(SO_4)_2$
	(c) Fe_2SO_4		$Fe_2(SO_4)_3$
78.	When $CuSO_4$ is hydrated, then		
	(a) Acidic (c) Neutral	• • •	basic Amphoteric
79.	Silvering of mirror is done by	(u)	[AFMC 2003]
	(a) $AgNO_3$	(b)	Ag_2O_3
	(c) Fe_2O_3	(d)	Al_2O_3
80.	The colour of $K_2 Cr_2 O_7$ change	ges fro	om red orange to lemon yellow
	on treatment with aqueous KO	H be	
	VI	m	[MP PMT 1994]
	(a) The reduction of Cr^{VI} to (b) The formation of chromium		
	(c) The conversion of dichroma		
	(d) The oxidation of potassium	hydro	oxide to potassium peroxide
81.	On heating pyrollusite with KO		
	(a) $KMnO_4$	• • •	$K_2 MnO_4$
	(c) $Mn(OH)_2$		Mn_3O_4
82.	$Cu(CN)_4^{2-}$ is colourless as it at		
	(a) Visible region(c) Infrared region	• • •	Ultraviolet region All above are wrong
83.	Acidified solution of chromic		
	• • •		AFMC 2000]
			$Cr_2O_3 + H_2O + O_2$
	(c) $CrO_5 + H_2O$ Which of the following metals co		$H_2Cr_2O_7 + H_2O + O_2$
84.	which of the following metals co	nrode	[CPMT 1972, 82; CBSE PMT 1989]
	(a) Gold	(b)	Silver
85.	(c) Nickel Which one of the following com	• • •	Iron Is is not coloured
-	5		[A11MS 1997]
	(a) Na_2CuCl_4		Na_2CdCl_4
	(c) $K_4 Fe(CN)_6$		$K_3 Fe(CN)_6$
86.	Acidified $KMnO_4$ is decolourzed	ed by	[AMU 1999]
	(a) <i>Br</i> ₂	• • •	O_3
87	(c) <i>HCl</i> Which of the following compoun	(d) d avn	
87.	(a) ScO		V_2O_3
	(c) <i>CuCN</i>		$Cr_2(SO_4)_3$
88.	Crystals of which pair are isomo		
	,	F	[

		(b) $MgSO_4$, $CaSO_4$
	(c) $ZnSO_4$, $MgSO_4$	(d) $PbSO_4$, $NiSO_4$
89.	_	PbO_2 and conc. HNO_3 pink colour
	is obtained due to the formation $()$ - $KM_{\rm H}O$	
	(a) $KMnO_4$	(b) $HMnO_4$
	(c) $Pb(MnO_4)_2$	(d) $PbMnO_4$
90.	Which of the following is used (a) TiO_2	(b) $V_2 O_5$
	., 2	×
91.	(c) <i>CuO</i> Which metal oxide is used to n	(d) HgO
<i>y</i>	(a) Fe_2O_3	(b) CoO
	(c) Cu_2O	(d) NiO
92.	() 2	in pyrophosphate is $Ca_2P_2O_7$, the
<u> </u>	formula of its ferric pyrophosp	
	(a) $Fe_2(P_2O_7)_3$	(b) $Fe_4(P_4O_{14})$
	(c) $Fe_4(P_2O_7)_3$	(d) Fe_3PO_4
93.		unds does not dissolve in ammonium
	hydroxide solution (a) AgF	(b) $AgBr$
	(a) Agr (c) $AgCl$	(d) AgI
94.	Which of the following is non-	() 0
51.	(a) Fe_3O_4	(b) Fe_2O_3
	(c) FeO	(d) All the above
95.	Ferrosilicon is used in steel ind	ustry as [Kerala (Med.) 2003]
	(a) A flux(c) A reducing agent	(b) Scavenger of hydrogen(d) A cutting tool
	(c) A reducing agent	(u) A cutting tool
	(e) Alloying agent	
96.	In the reaction,	
96.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2 - $	
96.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is	[Kerala (Med.) 2003]
96.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2	[Kerala (Med.) 2003] (b) MnCl ₂
	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O	[Kerala (Med.) 2003] (b) <i>MnCl</i> ₂ (d) <i>KCl</i>
96. 97.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2	[Kerala (Med.) 2003] (b) <i>MnCl</i> ₂ (d) <i>KCl</i>
	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following sta (a) Manganese salts give via flame	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] Net borax bead test in the reducing
	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following stat (a) Manganese salts give vio flame (b) From a mixed precipitation	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] Het borax bead test in the reducing the of $AgCl$ and AgI ammonia
	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following stat (a) Manganese salts give vic flame (b) From a mixed precipitat solution dissolves only A_1	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl
	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following state (a) Manganese salts give vice flame (b) From a mixed precipitate solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium
	 In the reaction, 2KMnO₄ + 16HCl → 5Cl₂ - the reduction product is (a) Cl₂ (c) H₂O Which one of the following state (a) Manganese salts give vior flame (b) From a mixed precipite solution dissolves only A, (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution have 	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] Het borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+, Ca^{2+} and HCO_3^- ions we
	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following state (a) Manganese salts give vice flame (b) From a mixed precipitate solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] Het borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+, Ca^{2+} and HCO_3^- ions we
	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following state (a) Manganese salts give vious flame (b) From a mixed precipitate solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution have get a precipitate of K_2Cd Collin's reagent is	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002]
97.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following stat (a) Manganese salts give vio flame (b) From a mixed precipitat solution dissolves only A, (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution hav get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl	[Kerała (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] Het borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$
97. 98.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following state (a) Manganese salts give vice flame (b) From a mixed precipitate solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution have get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl (c) $K_2Cr_2O_7 / H_2SO_4$	[Kerała (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$ (d) $Cr_2O_3 / 2C_5 H_5 N$
97.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following stat (a) Manganese salts give vio flame (b) From a mixed precipitat solution dissolves only A, (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution hav get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$ (d) $Cr_2O_3 / 2C_5 H_5 N$ aqueous solution
97. 98.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following state (a) Manganese salts give vice flame (b) From a mixed precipitate solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution have get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl (c) $K_2Cr_2O_7 / H_2SO_4$	[Kerała (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$ (d) $Cr_2O_3 / 2C_5 H_5 N$
97. 98.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following state (a) Manganese salts give vious flame (b) From a mixed precipitate solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution have get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl (c) $K_2Cr_2O_7 / H_2SO_4$ Which compound has coloured	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$ (d) $Cr_2O_3 / 2C_5 H_5 N$ aqueous solution
97. 98.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following stat (a) Manganese salts give vio flame (b) From a mixed precipitat solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution hav get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl (c) $K_2Cr_2O_7 / H_2SO_4$ Which compound has coloured (a) $Zn(NO_3)_2$	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl terments is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$ (d) $Cr_2 O_3 / 2C_5 H_5 N$ aqueous solution [RPMT 2002] (b) $LiNO_3$ (d) $Ba(NO_3)_2$
97. 98. 99.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following state (a) Manganese salts give vious flame (b) From a mixed precipitate solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution have get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl (c) $K_2Cr_2O_7 / H_2SO_4$ Which compound has coloured (a) $Zn(NO_3)_2$ (c) $Co(NO_3)_2$	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl terments is correct [AIEEE 2003] let borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$ (d) $Cr_2 O_3 / 2C_5 H_5 N$ aqueous solution [RPMT 2002] (b) $LiNO_3$ (d) $Ba(NO_3)_2$
97. 98. 99.	In the reaction, $2KMnO_4 + 16HCl \rightarrow 5Cl_2$ - the reduction product is (a) Cl_2 (c) H_2O Which one of the following stat (a) Manganese salts give via flame (b) From a mixed precipitat solution dissolves only A_1 (c) Ferric ions give a deep g ferrocyanide solution (d) On boiling a solution hav get a precipitate of K_2Cd Collin's reagent is (a) MNO_2 / HCl (c) $K_2Cr_2O_7 / H_2SO_4$ Which compound has coloured (a) $Zn(NO_3)_2$ (c) $Co(NO_3)_2$ Zinc oxide when treated with	[Kerala (Med.) 2003] (b) $MnCl_2$ (d) KCl tements is correct [AIEEE 2003] Met borax bead test in the reducing the of $AgCl$ and AgI ammonia gCl reen precipitate on adding potassium ing K^+ , Ca^{2+} and HCO_3^- ions we $a(CO_3)_2$ [RPMT 2002] (b) $MNO_4 / C_5 H_5 N$ (d) $Cr_2 O_3 / 2C_5 H_5 N$ aqueous solution [RPMT 2002] (b) $LiNO_3$ (d) $Ba(NO_3)_2$

		1 1.010	1		
101.	Which of the following compound		[BHU 1998]	116.	The correct order of magnetic moments (spin only values in B.M.) among is [AIEEE 2004]
	(a) $MgCl_2$	(b) <i>Hg</i>	Cl_2		(a) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
	(c) $CaCl_2$	(d) <i>Fe</i>	2/3		(b) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
102.	Which of the following statemer	nt is not true			(c) $[MnCl_4]^{2^-} > [CoCl_4]^{2^-} > [Fe(CN)_6]^{4^-}$
	(a) Colourless compounds of t				
	(b) Coloured compounds of tr(c) Colourless compounds of t				(d) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$
	(d) Transition elements form t		e e		(Atomic nos. $Mn = 25, Fe = 26, Co = 27$)
103.	Calamine is a mineral, which is		[MP PMT 2003]	117.	Hybridization of $[Ni(CO)_4]$ is [Pb. CET 2000]
	(a) $ZnCO_3$	(b) <i>ZnS</i>			(a) sp^3 (b) d^2sp^3
	(c) $ZnSO_4$	(d) ZnO)		(c) sp^3d (d) sp^2
104.	Super conductors are derived fr	om compour	ids of	118.	(c) sp a (d) sp What is the oxidation number of iron in the compound
			[Kerala (Engg.) 2002]	110.	$[Fe(H_2O)_5(NO)]SO_4$ [Pb. CET 2001]
	(a) <i>p</i>-block elements(c) Actinides	(b) Lantl (d) Tran	nanides sition elements		(a) $+2$ (b) $+3$
105.	Manganese achieves its highest	()		T 1993, 20	
	(a) MnO_3	(b) <i>Mn</i>		119.	Which of the following metal gives hydrogen gas, when heated with
	(c) $KMnO_4$	(d) $K_2 l$	MnO_4		hot concentrated alkali [Pb. CET 2002]
106.	Which can be reduced to the	metal by he	ating it in a stream of		(a) Cu (b) Ag (c) Zn (d) Ni
	hydrogen	(1)	[DPMT 2000]	120.	(c) <i>Zn</i> (d) <i>Ni</i> When ferric oxide reacts with <i>NaOH</i> , the product formed is
	(a) Copper (11) oxide(c) Aluminium oxide	., .	nesium oxide um oxide		[Pb. CET 2002]
107.	Which of the following is colour	()			(a) NaF (b) $FeCl_3$
	(a) $ScCl_3$	(b) <i>TiO</i>	2		(c) $Fe(OH)_3$ (d) $NaFeO_2$
	(c) $MnSO_4$	(d) ZnS	-	121.	The compound insoluble in water is [AIIMS 2004]
108.	Chrome green is	(1) 2.03	- 4 - 4		(a) Mercurous nitrate (b) Mercuric nitrate
	(a) Chromium sulphate	(b) Chro	mium chloride		(c) Mercurous chloride (d) Mercurous perchlorate
	(c) Chromium nitrate	(d) Chro	mium oxide	122.	Which is an amphoteric oxide[JEE Orissa 2004, 05](a) ZnO(b) CaO
109.	The colour of $(NH_4)_2 SO_4 Fe$	$(SO_4)_3.24$	H_2O is		$\begin{array}{ccc} (a) & 2 h O \\ (b) & C a O \\ (c) & B a O \\ (d) & S r O \end{array}$
			[BHU 1982; CPMT 1989]	123.	What is the magnetic moment of $[FeF_6]^{3-}$
	(a) White (c) Violet	(b) Gree (d) Blue	n		[JEE Orissa 2004]
110.	Correct formula of potassium fe				(a) 5.92 (b) 5.49
	•	5	3; CPMT 1974; AFMC 2005]		(c) 2.32 (d) 4
	(a) $K_4 Fe(CN)_6$	(b) <i>K</i> ₃	$Fe(CN)_6$	124.	How H_2S is liberated in laboratory [JEE Orissa 2004]
	(c) $K_3[Fe(CN)_3]$	(d) K ₃ [$Fe(CN)_4$]		(a) $FeSO_4 + H_2SO_4$
m.	The form of iron having the hig	hest carbon	content is		(b) $FeS + dil. H_2SO_4$
			[DPMT 2005]		(c) $FeS + \text{conc.} H_2 SO_4$
	(a) Cast iron(c) Strain steel	(b) Wrou (d) Mild	e		(d) Elementary H_2 + elementary S
112.	(c) Strain steel Aqueous solution of ferric chlor	()	[MP PMT 1999]	125.	The spin magnetic moment of cobalt in the compound
	(a) Acidic	(b) Basic	• •		$Hg[Co(SCN)_4]$ is [IIT JEE Screening 2004]
	(c) Neutral	(d) Amp	hoteric		(a) $\sqrt{3}$ (b) $\sqrt{8}$
113.	In the reduction of dichromate				(c) $\sqrt{15}$ (d) $\sqrt{24}$
	involved per chromium atom is (a) 2	[Pb. PMT 2 (b) 3	001]	126.	In which of these processes platinum is used as a catalyst
	(a) $\frac{2}{c}$ (c) 4	(d) 1			[DCE 2004]
114.	A group of acidic oxide is	~ /	[MP PET 2003]		(a) Oxidation of ammonia to form HNO_3
	(a) CrO_3 , Mn_2O_7	(b) <i>ZnC</i>	O, Al_2O_3		(b) Hardening of oils
	(c) CaO, ZnO	(d) <i>Na</i> ₂	O, Al_2O_3		(c) Production of synthetic rubber(d) Synthesis of methanol
115.	Silver nitrate is mainly used	- <u>-</u>	[CPMT 1988, 93]	127.	Iron is dropped in dil. HNO_3 , it gives [DCE 2004]
	(a) In photography	. ,	odel formation		(a) Ferric nitrate
	(c) As reducing agent	(d) As d	ehydrating agent		(b) Ferric nitrate and NO_2
					(c) Ferrous nitrate and ammonium nitrate

		· 1					
128.	(d) Ferrous nitrate and nitrie CrO_3 dissolves in aqueous		[] & K 2005]	141.	$4K_2Cr_2O_7 \xrightarrow{\text{heat}} 4K_2Cr$	$O_4 + $	
120.	-		[] & K 2005]		reaction X is	(b)	[DCE 2004 Cr ₂ O ₇
	(a) CrO_4^{2-}	(b) $Cr(OH)_{3}^{-}$			(a) CrO_3		
	(c) $Cr_2 O_7^{2-}$	(d) $Cr(OH)_2$			(c) Cr_2O_3	(d)	CrO ₅
129.	KI and $CuSO_4$ solution whe	en mixed, give		142.	Monds process is used for (a) <i>Ni</i>	(b)	[AFMC 2004 Al
-	-		4; UPSEAT 2004]		(c) <i>Fe</i>	• • •	Cu
	(a) $CuI_2 + K_2SO_4$	(b) $Cu_2I_2 + K_2$	SO ₄	143.	Stainless steel is an alloy of		[AFMC 2004
	(c) $K_2 SO_4 + Cu_2 I_2 + I_2$		$uI_2 + I_2$		(a) Copper		Nickel and chromium Zinc
130.		., 2 4	2 2	M744404	(c) Manganese Percentage of silver in German		
130.	(a) Oxidation of <i>Cu</i>	(b) Reduction of (111 2004	[AFMC 2004; CP/	VT 198	5; CBSE PMT 2000; MP PMT 200
					(a) 0%		1% None of these
101	(c) Oxidation of Ag	(d) Reduction of	5	145.	(c) 5% Which process of purification	. ,	None of these represented by the followin
131.	By annealing, steel (a) Becomes soft		[BHU 2004]		scheme $Ti_{impure} + 2I_2 \xrightarrow{250^{\circ}C} T$		
	(b) Becomes liquid				impure impure	<i>u</i> 4	•
	(c) Becomes hard and brittle	2			(a) Cupellation	(b)	[Kerala PMT 2004 Poling
	(d) Is covered with a thin fil	m of Fe_3O_4			(c) Electrolytic refining	• • •	Zone refining
132.	Which of the following is mor	e soluble in ammonia			(e) Van-Arkel process		-
	(a) AgCl	(b) AgBr	[MH CET 2003]	146.	Which of the following sulphid the corresponding metal	es whe	en heated strongly in air give Kerala PMT 200
	(c) Agl	(d) None of these			(a) Cu_2S	(b)	CuS
133.	Potassium permagnate works	as oxidising agent both	h in acidic and		(c) Fe_2S_3	. ,	FeS
	basic medium. In both stat				(e) HgS	(u)	
	respestively		Kerala CET 2005]	147.	Guignet's green is known as		[Kerala PMT 2004
	(a) MnO_2^- and Mn^{3+}	(b) Mn^{3+} and N	Mn^{2+}		(a) $Cr_2O_3 \cdot 2H_2O$	(b)	$FeO_3.2H_2O$
	(c) Mn^{2+} and Mn^{3+}	(d) MnO_2 and L	Mn^{2+}		(c) Cu_2O_3	(d)	$FeCO_3.Cr_2O_3$
	(e) Mn^{2+} and MnO_2				(e) $FeO \cdot Cr_2O_3$		
12.4		1 1 1	1 1 1	148.	Vanadium (III) oxide is a strong		[Kerala PMT 2004
134.	Which of the followign is the	green coloured powder	produced when	140.			•
134.	Which of the followign is the ammonium dichromate is use			140.	(a) Drying agent	(b)	Oxidising agent
134.	ammonium dichromate is use	d in fire works	[] & K 2005]	140.		(b)	•
134.	ammonium dichromate is use (a) <i>Cr</i>	d in fire works (b) CrO ₃		140.	(a) Drying agent(c) Reducing agent	(b) (d)	Oxidising agent
134.	ammonium dichromate is use (a) Cr (c) Cr_2O_3	d in fire works (b) CrO_3 (d) $CrO(O_2)$	[] & K 2005]		 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com 	(b) (d) ause bine w	Oxidising agent Wetting agent [KCET 2004 vith iron
134.	ammonium dichromate is use (a) <i>Cr</i>	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN	[] & К 2005] ИО ₃		 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide 	(b) (d) ause bine w layer a	Oxidising agent Wetting agent [KCET 2004 with iron and protects iron from rusting
	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20	[] & K 2005]		 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com 	(b) (d) bine w layer a	Oxidising agent Wetting agent [KCET 200 with iron and protects iron from rusting t
	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS	[] & К 2005] ИО ₃	149.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemica in it. 	(b) (d) bine w layer a lot rust al com	Oxidising agent Wetting agent [KCET 200 with iron and protects iron from rusting t pound with chromium preser
135.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS	[] & К 2005] Ю ₃ Ю2; NCERT 1977]		 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemica in it. The main product obtained w 	(b) (d) bine w layer a lot rust al comp hen a	Oxidising agent Wetting agent [KCET 200 with iron and protects iron from rusting t pound with chromium present solution of sodium carbonat
	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS	[] & К 2005] ИО ₃	149.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicatin it. The main product obtained w reacts with mercuric chloride is 	(b) (d) bine w layer a lot rust al com hen a	Oxidising agent Wetting agent [KCET 2004 with iron and protects iron from rusting t pound with chromium present solution of sodium carbonat [KCET 2004
135.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS a temperature is	[] & К 2005] Ю ₃ Ю2; NCERT 1977]	149.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemica in it. The main product obtained w reacts with mercuric chloride is (a) Hg(OH)₂ 	(b) (d) ause bine w layer a lot rust al comp hen a (b)	Oxidising agent Wetting agent [KCET 2004 ith iron and protects iron from rusting t pound with chromium presen solution of sodium carbonat [KCET 2004 HgCO3.HgO
135.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS temperature is (b) CuO (d) Ag_2O	[] & K 2005] 70 ₃ 102; NCERT 1977] [DCE 2002]	149. 150.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicatin it. The main product obtained w reacts with mercuric chloride is (a) Hg(OH)₂ (c) HgCO₃ 	(b) (d) ause bine w layer a not rust al comp hen a (b) (d)	Oxidising agent Wetting agent [KCET 2004 with iron and protects iron from rusting t pound with chromium present solution of sodium carbonate [KCET 2004 $HgCO_3.HgO$ $HgCO_3.HgO$ $HgCO_3.Hg(OH)_2$
135.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS temperature is (b) CuO (d) Ag_2O f elements cannot form a	[] & K 2005] 70 ₃ 102; NCERT 1977] [DCE 2002]	149.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemica in it. The main product obtained w reacts with mercuric chloride is (a) Hg(OH)₂ 	(b) (d) ause bine w layer a not rust al comp hen a (b) (d)	Oxidising agent Wetting agent [KCET 2004 with iron and protects iron from rusting t pound with chromium present solution of sodium carbonate [KCET 2004 $HgCO_3.HgO$ $HgCO_3.HgO$ $HgCO_3.Hg(OH)_2$
135.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following pari of (a) $Zn - Cu$	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS temperature is (b) CuO (d) Ag_2O	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy	149. 150.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicatin it. The main product obtained w reacts with mercuric chloride is (a) Hg(OH)₂ (c) HgCO₃ 	(b) (d) ause bine w layer a lot rust al com hen a (b) (d) magneti	Oxidising agent Wetting agent [KCET 2004 with iron and protects iron from rusting t pound with chromium presen solution of sodium carbonat [KCET 2004 $HgCO_3.HgO$ $HgCO_3.HgO$ $HgCO_3.Hg(OH)_2$ ic character
135.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following pari of	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS temperature is (b) CuO (d) Ag_2O f elements cannot form a	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy	149. 150.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemication in it. The main product obtained we reacts with mercuric chloride is (a) Hg(OH)₂ (c) HgCO₃ Which of the following has diam (a) [NiCl₄]²⁻ 	(b) (d) ause bine w layer a not rust al comp hen a (b) (d) nagneti	Oxidising agent Wetting agent [KCET 200, with iron and protects iron from rusting t pound with chromium presen solution of sodium carbonat [KCET 200, $HgCO_3.HgO$ $HgCO_3.HgO$ $HgCO_3.HgOH)_2$ ic character [Pb. CET 200, $[CoF_6]^{3-}$
135.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following part of (a) $Zn - Cu$ (c) Fe, C Which of the following shows	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS i temperature is (b) CuO (d) Ag_2O f elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy	149. 150. 151.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicating in it. The main product obtained were acts with mercuric chloride is (a) <i>Hg</i>(<i>OH</i>)₂ (c) <i>HgCO</i>₃ Which of the following has diant (a) [<i>NiCl</i>₄]²⁻ (c) [<i>Fe</i>(<i>H</i>₂<i>O</i>)₆]²⁺ 	(b) (d) ause bine w layer a lot rust al comp hen a (b) (d) (b) (d)	Oxidising agent Wetting agent [KCET 200. ith iron and protects iron from rusting t pound with chromium preser solution of sodium carbonat [KCET 200. $HgCO_3.HgO$ $HgCO_3.HgOH)_2$ ic character [Pb. CET 200. $[CoF_6]^{3-}$ $[Ni(CN)_4]^{2-}$
135. 136. 137.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following part of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS 1 temperature is (b) CuO (d) Ag_2O f elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005]	149. 150.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemication in it. The main product obtained we reacts with mercuric chloride is (a) Hg(OH)₂ (c) HgCO₃ Which of the following has diam (a) [NiCl₄]²⁻ 	(b) (d) ause bine w layer a lot rust al comp hen a (b) (d) (b) (d)	Oxidising agent Wetting agent [KCET 200. ith iron and protects iron from rusting t pound with chromium preser solution of sodium carbonat [KCET 200. $HgCO_3.HgO$ $HgCO_3.HgOH)_2$ ic character [Pb. CET 200. $[CoF_6]^{3-}$ $[Ni(CN)_4]^{2-}$
135. 136. 137.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following pari of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$ (c) $TiCl_4$	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS i temperature is (b) CuO (d) Ag_2O if elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6 (d) SO_2	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005]	149. 150. 151.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicating in it. The main product obtained were acts with mercuric chloride is (a) <i>Hg(OH)</i>₂ (c) <i>HgCO</i>₃ Which of the following has diant (a) [<i>NiCl</i>₄]²⁻ (c) [<i>Fe(H</i>₂<i>O)</i>₆]²⁺ The solubility of silver brown 	(b) (d) ause bine w layer a not rust al comp hen a (b) (d) nagneti (b) (d) (d) nide in	Oxidising agent Wetting agent [KCET 200. ith iron and protects iron from rusting t pound with chromium preser solution of sodium carbonat [KCET 200. $HgCO_3 . HgO$ $HgCO_3 . HgO$ $HgCO_3 . HgOH)_2$ ic character [Pb. CET 200. $[CoF_6]^{3-}$ $[Ni(CN)_4]^{2-}$ n hypo solution due to th
135. 136. 137.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following part of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS i temperature is (b) CuO (d) Ag_2O if elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6 (d) SO_2	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005] [DCE 2002]	149. 150. 151.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicating in it. The main product obtained were acts with mercuric chloride is (a) <i>Hg(OH)</i>₂ (c) <i>HgCO</i>₃ Which of the following has diant (a) [<i>NiCl</i>₄]²⁻ (c) [<i>Fe(H</i>₂<i>O)</i>₆]²⁺ The solubility of silver brown formation of (a) [<i>Ag(S</i>₂<i>O</i>₃)]⁻³ 	(b) (d) ause bine w layer a lot rust al com hen a (b) (d) nagneti (b) (d) nide ir	Oxidising agent Wetting agent [KCET 200. ith iron and protects iron from rusting t pound with chromium preser solution of sodium carbonat [KCET 200. $HgCO_3.HgO$ $HgCO_3.HgOH)_2$ ic character [Pb. CET 200. $[CoF_6]^{3-}$ $[Ni(CN)_4]^{2-}$ h hypo solution due to th [Pb. CET 2003; CPMT 198 Ag_2SO_3
135. 136. 137. 138.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following pari of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$ (c) $TiCl_4$	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS i temperature is (b) CuO (d) Ag_2O if elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6 (d) SO_2	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005]	149. 150. 151.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemication in it. The main product obtained with mercuric chloride is (a) <i>Hg(OH)</i>₂ (c) <i>HgCO</i>₃ Which of the following has diant (a) [<i>NiCl</i>₄]²⁻ (c) [<i>Fe(H</i>₂<i>O</i>)₆]²⁺ The solubility of silver bromformation of (a) [<i>Ag(S</i>₂<i>O</i>₃)]⁻³ (c) [<i>Ag(S</i>₂<i>O</i>₃)]⁻¹ 	(b) (d) ause bine w layer a lot rust al com hen a (b) (d) nagneti (b) (d) nide ir	Oxidising agent Wetting agent [KCET 200, which iron and protects iron from rusting t pound with chromium present solution of sodium carbonary [KCET 200, $HgCO_3.HgO$ $HgCO_3.HgO$ $HgCO_3.HgOH)_2$ ic character [Pb. CET 200, $[CoF_6]^{3-}$ [$Ni(CN)_4$] ²⁻ hypo solution due to th [Pb. CET 2003; CPMT 198; Ag_2SO_3 $Ag_2S_2O_3$
135. 136. 137. 138.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following part of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$ (c) $TiCl_4$ Which of the following is also	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS o temperature is (b) CuO (d) Ag_2O f elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6 (d) SO_2 known as "Fools gold"	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005] [DCE 2002]	149. 150. 151.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicatin it. The main product obtained wereacts with mercuric chloride is (a) <i>Hg(OH)</i>2 (c) <i>HgCO</i>3 Which of the following has diant (a) [<i>NiCl</i>4]²⁻ (c) [<i>Fe(H</i>2<i>O)</i>6]²⁺ The solubility of silver bromformation of (a) [<i>Ag(S</i>2<i>O</i>3)]⁻³ (c) [<i>Ag(S</i>2<i>O</i>3)]⁻³ (c) [<i>Ag(S</i>2<i>O</i>3)]⁻³ (c) [<i>Ag(S</i>2<i>O</i>3)]⁻³ 	(b) (d) ause bine w layer a lot rust al com hen a (b) (d) nagneti (b) (d) nide in (b) (d)	Oxidising agent Wetting agent [KCET 200. ith iron and protects iron from rusting t pound with chromium preser solution of sodium carbonat [KCET 200. $HgCO_3.HgO$ $HgCO_3.HgOH)_2$ ic character [Pb. CET 200. $[CoF_6]^{3-}$ $[Ni(CN)_4]^{2-}$ h hypo solution due to th [Pb. CET 2003; CPMT 198 Ag_2SO_3
135. 136. 137. 138.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following pari of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$ (c) $TiCl_4$ Which of the following is also (a) Wurtzite	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS itemperature is (b) CuO (d) Ag_2O f elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6 (d) SO_2 known as "Fools gold" (b) Iron pyrites (d) Silver glance	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005] [DCE 2002]	149. 150. 151.	 (a) Drying agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does n (d) Iron forms a hard chemicatin it. The main product obtained w reacts with mercuric chloride is (a) <i>Hg</i>(<i>OH</i>)₂ (c) <i>HgCO</i>₃ Which of the following has diant (a) [<i>NiCl</i>₄]²⁻ (c) [<i>Fe</i>(<i>H</i>₂<i>O</i>)₆]²⁺ The solubility of silver bromformation of (a) [<i>Ag</i>(<i>S</i>₂<i>O</i>₃)]⁻³ (c) [<i>Ag</i>(<i>S</i>₂<i>O</i>₃)]⁻³ (c) [<i>Ag</i>(<i>S</i>₂<i>O</i>₃)]⁻³ (c) [<i>Ag</i>(<i>S</i>₂<i>O</i>₃)]⁻³ 	(b) (d) ause bine w layer a lot rust al com hen a (b) (d) nagneti (b) (d) nide ir (b) (d)	Oxidising agent Wetting agent [KCET 200. with iron and protects iron from rusting t pound with chromium preser solution of sodium carbonat [KCET 200. $HgCO_3.HgO$ $HgCO_3.HgOH)_2$ ic character [Pb. CET 200. $[CoF_6]^{3-}$ [$Ni(CN)_4$] ²⁻ n hypo solution due to th [Pb. CET 2003; CPMT 198 Ag_2SO_3 $Ag_2S_2O_3$ [DPMT 1982, 8
135. 136. 137. 138. 139.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following part of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$ (c) $TiCl_4$ Which of the following is also (a) Wurtzite (c) Chalcosite Which one of the following is	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS of temperature is (b) CuO (d) Ag_2O f elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6 (d) SO_2 known as "Fools gold" (b) Iron pyrites (d) Silver glance highest melting halide	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005] [DCE 2002]	149. 150. 151.	(a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does m (d) Iron forms a hard chemication in it. The main product obtained w reacts with mercuric chloride is (a) $Hg(OH)_2$ (c) $HgCO_3$ Which of the following has diant (a) $[NiCl_4]^{2-}$ (c) $[Fe(H_2O)_6]^{2+}$ The solubility of silver bromformation of (a) $[Ag(S_2O_3)]^{-3}$ (c) $[Ag(S_2O_3)]^{-3}$ ((b) (d) ause bine w layer a lot rust al comp hen a (b) (d) nagneti (b) (d) nide ir (b) (d) MT 1972 AMCET (b)	Oxidising agent Wetting agent [KCET 200. ith iron and protects iron from rusting t pound with chromium preser solution of sodium carbonat [KCET 200. $HgCO_3 \cdot HgO$ $HgCO_3 \cdot HgO$ $HgCO_3 \cdot HgOH_2$ ic character [Pb. CET 200. $[CoF_6]^{3-}$ [$Ni(CN)_4$] ²⁻ 1 hypo solution due to th [Pb. CET 2003; CPMT 198 Ag_2SO_3 Ag_2SO_3 Ag_2SO_3 [DPMT 1982; 8 2, 80, 89; MLNR 1985; AFMC 199 1993; MP PMT 1996; KCET 2000 Zn and Cu
135. 136. 137. 138. 139.	ammonium dichromate is use (a) Cr (c) Cr_2O_3 Which compound does not di (a) HgS (c) PbS The least stable oxide at room (a) ZnO (c) Sb_2O_3 Which of the following part of (a) $Zn - Cu$ (c) Fe, C Which of the following shows (a) $HgCl_2$ (c) $TiCl_4$ Which of the following is also (a) Wurtzite (c) Chalcosite	d in fire works (b) CrO_3 (d) $CrO(O_2)$ ssolve in hot dilute HN [DCE 20 (b) CuS (d) CdS itemperature is (b) CuO (d) Ag_2O f elements cannot form a (b) $Fe - Hg$ (d) Na, Hg dimerisation (b) B_2H_6 (d) SO_2 known as "Fools gold" (b) Iron pyrites (d) Silver glance	[] & K 2005] 703 102; NCERT 1977] [DCE 2002] an alloy [KCET 2005] [DCE 2002]	149. 150. 151.	(a) Drying agent (c) Reducing agent (c) Reducing agent (e) Precipitating agent Stainless steel does not rust bec (a) Chromium and nickel com (b) Chromium forms an oxide (c) Nickel present in it, does m (d) Iron forms a hard chemication in it. The main product obtained w reacts with mercuric chloride is (a) $Hg(OH)_2$ (c) $HgCO_3$ Which of the following has diant (a) $[NiCl_4]^{2-}$ (c) $[Fe(H_2O)_6]^{2+}$ The solubility of silver bromformation of (a) $[Ag(S_2O_3)]^{-3}$ (c) $[Ag(S_2O_3)]^{-3}$ (c) $[Ag(S_2O_3)]^{-3}$ (c) $[Ag(S_2O_3)]^{-3}$ (c) $[Ag(S_2O_3)]^{-3}$	(b) (d) ause bine w layer a lot rust al comp hen a (b) (d) nagneti (b) (d) nide ir (b) (d) MT 1972 AMCET (b)	Oxidising agent Wetting agent [KCET 200. ith iron and protects iron from rusting t pound with chromium preser solution of sodium carbonal [KCET 200. $HgCO_3 \cdot HgO$ $HgCO_3 \cdot HgO$ $HgCO_3 \cdot HgOH_2$ ic character [Pb. CET 200; $[CoF_6]^{3-}$ [$Ni(CN)_4$] ²⁻ h hypo solution due to th [Pb. CET 2003; CPMT 198 Ag_2SO_3 Ag_2SO_3 [DPMT 1982, 8 2, 80, 89; MLNR 1985; AFMC 199 1993; MP PMT 1996; KCET 200

154.	lodine is formed when <i>KI</i> reacts w	with a		167.
	(a) $CuSO_A$	(b)	[Pb. CET 2004] $(NH_4)_2 SO_4$	
	(c) $ZnSO_4$		$FeSO_4$	168.
155.	Rust is	(u)	[Pb. CET 2004]	
	(a) $FeO + Fe(OH)_2$	(b)	Fe_2O_3	_
			Fe_2O_3 and $Fe(OH)_3$	169.
156	$[Sc(H_2O)_6]^{3+}$ ion is	(-)		
156.	$[3C(H_2O)_6] \text{ion is}$ (a) Colourless and diamagnetic		[Pb. CET 2004]	
	(a) Colouress and diamagnetic(b) Coloured and octahedral			170
	(c) Colourless and paramagnetic	c		170.
	(d) Coloured and paramagnetic	۰.		
157.	Which of the following is called		vitriol 1990; Bihar MEE 1995; BVP 2004]	
	(a) $ZnCl_2$		$MgSO_4.7H_2O$	171.
	(c) $ZnSO_4.7H_2O$		$Al_2(SO_4)_3$	
158.	$FeSO_4.7H_2O$ shows isomorpl		2	172.
130.			$MnSO_4.4H_2O$	-
			$CaCl_2.2H_2O$	
159.	Which pair of compound is ex			
13.9.	aqueous medium	.peece	[IIT Screening 2005]	
	(a) $FeCl_2$ and $CuCl_2$	(b)	$VOCl_2$ and $CuCl_2$	
	(c) $VOCl_2$ and $FeCl_2$	(d)	$FeCl_2$ and $MnCl_2$	
160.			t conc. <i>NaOH</i> solution [CPMT 2004]	
	(a) <i>Fe</i> (c) <i>Sn</i>	(b) (d)	Zn Ag	
161.	Which of the following sulphides			
	(a) CuS		PMT 1983, 88, 2004; NCERT 1976] CdS	
	(c) ZnS	• • •	CoS	173.
162.	Which of the following is not oxid	dized		
		(1)	[IIT Screening 2005]	174.
	(a) <i>KI</i>	. ,	FeSO ₄	
_	(c) $KMnO_4$		$K_2 MnO_4$	175
163.	The number of moles of <i>KMn</i> alkaline medium is	04 1	educed by one mole of <i>K1</i> in [CBSE PMT 2005]	175.
	(a) One fifth	(b)	Five	
	(c) One	• • •	Two	176.
164.	Excess of <i>KI</i> reacts with <i>CuSC</i>			
	solution is added to it. Which of reaction	the s	Eatements is incorrect for this [AIEEE 2004]	
	(a) $Na_2S_2O_3$ is oxidised	(b)	CuI_2 is formed	177.
	(c) Cu_2I_2 is formed	(d)	Evolved I_2 is reduced	
165.	The only cations present in			179
	Fe^{3+} , Zn^{2+} and Cu^{2+} . The re-			178.
	-	•	te Fe^{3+} in one step is [IIT 1997]	
	(a) 2 <i>M HCl</i>		6 <i>M NH</i> ₃	170
	(c) 6 <i>M NaOH</i>		H_2S gas	179.
166.	Which element is alloyed with co		to form bronze PMT 1972, 80, 93; CPMT 1980, 82]	
	(a) <i>Fe</i>		Mn 1972, 80, 93; CFMT 1980, 82] Mn	
	(c) <i>Sn</i>	(d)	Zn	180.

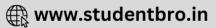
(a)	ery consists of		[AFMC 19
1.1	Impure corundum	• • •	Impure carborundum
(c)	Impure graphite	• •	Purest form of iron
The	metal commonly present in	brass	-
(a)	Mg	(b)	[EAMCET 19
(\mathbf{a})	0	(d)	
• •	he equation	(u)	/
			$\Lambda [M(CN)]^{-} + \Lambda O U^{-}$
	$M + 8CN^{-} + 2H_2O + O_2 + $		
	e metal <i>M</i> is	(L)	[MP PET 20
(a) (c)	Copper Gold	(b) (d)	lron Zinc
• •	term platforming is	(u)	[Kerala (Med.) 20
	Platinum painting		[rectula (recar) 20
	Flat sheet of platinum		
(c)	Platinum manufacturing		
• •	Platinum used as a catalyst		
	ple of cassium is		[BHU 20
(a)	Gold solution	(b)	Silver solution
(c)	Copper solution	(d)	Platinum solution
Mat	ch the items under List 1 wit	h the	compounds/elements from
List	2 . Select the correct answer	from	
	List 1		List 2
(i)	Explosive	(A)	NaN ₃
(ii)	Artificial gem	(B)	Fe_3O_4
(iii)	Self reduction	(C)	Sn
	Magnetic material		Al_2O_3
(10)	Magnetic material		
		(E)	$Pb(N_3)_2$
		(F)	Fe_2O_3
		(G)	Cu
		(H)	SiC
(a)	(i) A, (ii) D, (iii) G, (iv) B	(b)	(i) A, (ii) D, (iii) G, (iv) F
(c)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i>	(d)	(i) <i>E</i> , (ii) <i>H</i> , (iii) <i>C</i> , (iv) <i>F</i>
(c) Bloc			(i) <i>E</i> , (ii) <i>H</i> , (iii) <i>C</i> , (iv) <i>F</i>
Bloc	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i>		(i) <i>E</i> , (ii) <i>H</i> , (iii) <i>C</i> , (iv) <i>F</i> <i>Mg</i>
Bloc (a) (c)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> od haemoglobin contains the <i>Al Cu</i>	metal	
Bloc (a) (c) Perc	 (i) E, (ii) D, (iii) G, (iv) B bd haemoglobin contains the Al Cu centage of carbon in steel is 	metal (b) (d)	Mg Fe
Bloc (a) (c) Perc	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> od haemoglobin contains the <i>Al Cu</i>	metal (b) (d) (b)	Mg Fe 0.25 - 0.5%
Bloc (a) (c) Perc (a) (c)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> and haemoglobin contains the <i>AI</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5%	metal (b) (d) (b)	Mg Fe
Bloc (a) (c) Perc (a) (c)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>AI</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% el is manufactured from	metal (b) (d) (b) (d)	Mg Fe 0.25 - 0.5% 3 - 3.5%
(a) (c) Perc (a) (c) Stee (a)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> ad haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% d is manufactured from Wrought iron	metal (b) (d) (b) (d) (b)	<i>Mg</i> <i>Fe</i> 0.25 – 0.5% 3 – 3.5% Cast iron
Bloc (a) (c) Perc (a) (c) Stee (a) (c)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% el is manufactured from Wrought iron (a) and (b) both	metal (b) (d) (b) (d) (b) (d)	Mg Fe 0.25 – 0.5% 3 – 3.5% Cast iron Haematite
Bloc (a) (c) Perc (a) (c) Stee (a) (c) Moo	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> and haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% el is manufactured from Wrought iron (a) and (b) both dern method for the manufact	metal (b) (d) (b) (d) (b) (d)	Mg Fe 0.25 – 0.5% 3 – 3.5% Cast iron Haematite
Bloc (a) (c) Perc (a) (c) Stee (a) (c) Moo (a)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> ad haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% d is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process	metal (b) (d) (b) (d) (b) (d) eture of	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel is
Bloc (a) (c) Perc (a) (c) Stee (a) (c) Moo (a) (b)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> ad haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% d is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart	metal (b) (d) (b) (d) (b) (d) eture of	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel is
Bloc (a) (c) Perc (a) (c) Stee (a) (c) Moc (a) (b) (c)	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> ad haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% d is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method	metal (b) (d) (b) (d) (b) (d) eture of	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel is
Bloc (a) (c) Perc (a) (c) Stee (a) (c) Moo (a) (b) (c) (d)	 (i) E, (ii) D, (iii) G, (iv) B bd haemoglobin contains the Al Cu centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% cl is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process 	metal (b) (d) (b) (d) (b) (d) eture of	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel is
Bloc (a) (c) Perc (a) (c) Stee (a) (c) Moc (a) (b) (c) (d) Spie	 (i) <i>E</i>, (ii) <i>D</i>, (iii) <i>G</i>, (iv) <i>B</i> bd haemoglobin contains the <i>Al</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% cl is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process cgeleisen is an alloy of 	metal (b) (d) (b) (d) (b) (d) eture of	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel is ccess
Bloc (a) (c) Perc (a) (c) Stee (a) (c) Moc (a) (b) (c) (d) Spic (a)	 (i) <i>E</i>, (ii) <i>D</i>, (iii) <i>G</i>, (iv) <i>B</i> bd haemoglobin contains the <i>AI</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% central constraints central constraints centage of carbon in steel is definition <lidefinitio< td=""><td>(b) (d) (b) (d) (b) (d) (c) (c) (b) (b)</td><td>Mg Fe 0.25 - 0.5% 3 - 3.5% Cast iron Haematite of steel is cess Fe, Mg and C</td></lidefinitio<>	(b) (d) (b) (d) (b) (d) (c) (c) (b) (b)	Mg Fe 0.25 - 0.5% 3 - 3.5% Cast iron Haematite of steel is cess Fe, Mg and C
Bloc (a) (c) Perc (a) (c) Stee (a) (c) (d) (c) (d) Spie (a) (c)	 (i) <i>E</i>, (ii) <i>D</i>, (iii) <i>G</i>, (iv) <i>B</i> bd haemoglobin contains the <i>AI</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% centage of carbon in steel is is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process celeisen is an alloy of <i>Fe</i>, <i>C</i> and <i>Mn</i> <i>Fe</i>, Co and <i>Cr</i> 	(b) (d) (b) (d) (b) (d) (c) (c) (c) (c) (c)	Mg Fe 0.25 - 0.5% 3 - 3.5% Cast iron Haematite of steel is cess Fe, Mg and C Fe, Cu and Ni
Bloc (a) (c) Perc (a) (c) Stee (a) (c) (d) (c) (d) Spie (a) (c)	 (i) <i>E</i>, (ii) <i>D</i>, (iii) <i>G</i>, (iv) <i>B</i> bd haemoglobin contains the <i>AI Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% centage of carbon in steel is definition is definition in the steel is definition is <lidefinition is<="" li=""> definition is definition</lidefinition>	(b) (d) (b) (d) (b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Mg Fe 0.25 - 0.5% 3 - 3.5% Cast iron Haematite of steel is cess Fe, Mg and C Fe, Cu and Ni ollowing metals
(a) (c) Perce (a) (c) Stee (a) (c) Moce (a) (b) (c) (d) (c) (d) Stai	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% d is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process regeleisen is an alloy of <i>Fe</i> , <i>C</i> and <i>Mn</i> <i>Fe</i> , Co and <i>Cr</i> nless steel is an alloy steel of	metal (b) (d) (b) (d) (d) (d) (d) (d) (the for WP PE	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel is ccsss <i>Fe, Mg</i> and <i>C Fe, Cu</i> and <i>Ni</i> ollowing metals T 1990; Pb. PET 1999; KCET 20
(a) (c) Perco (a) (c) Stee (a) (c) Moo (a) (c) (d) Spic (a) (c) Stai	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% el is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process Segleisen is an alloy of <i>Fe</i> , <i>C</i> and <i>Mn</i> <i>Fe</i> , Co and <i>Cr</i> nless steel is an alloy steel of <i>Fe</i> Only	metal (b) (d) (b) (d) (d) (d) (d) (d) (d) (the fc WP PE' (b)	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel is ccss <i>Fe, Mg</i> and <i>C Fe, Cu</i> and <i>Ni</i> billowing metals T 1990; Pb. PET 1999; KCET 20 <i>Cr</i> and <i>Ni</i>
(a) (c) Perc (a) (c) Stee (a) (c) Moc (a) (b) (c) (d) Spie (a) (c) Stai	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% el is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process Segleisen is an alloy of <i>Fe</i> , <i>C</i> and <i>Mn</i> <i>Fe</i> , Co and <i>Cr</i> nless steel is an alloy steel of <i>Fe</i> Only <i>W</i> and <i>Cr</i>	(b) (d) (b) (d) (d) (d) (d) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Mg Fe 0.25 - 0.5% 3 - 3.5% Cast iron Haematite of steel is ccsss Fe, Mg and C Fe, Cu and Ni billowing metals T 1990; Pb. PET 1999; KCET 20 Cr and Ni Ni and Be
Block (a) (c) Perce (a) (c) Steee (a) (c) Mood (a) (b) (c) Mood (a) (b) (c) Stati (a) (c) Stati (a) (c) In t	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% d is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process Segleisen is an alloy of <i>Fe</i> , <i>C</i> and <i>Mn</i> <i>Fe</i> , Co and <i>Cr</i> nless steel is an alloy steel of <i>Fe</i> Only <i>W</i> and <i>Cr</i> he manufacture of steel, th	(b) (d) (b) (d) (d) (d) (d) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Mg Fe 0.25 - 0.5% 3 - 3.5% Cast iron Haematite of steel is ccsss Fe, Mg and C Fe, Cu and Ni billowing metals T 1990; Pb. PET 1999; KCET 20 Cr and Ni Ni and Be
Block (a) (c) Perce (a) (c) Steec (a) (c) Steec (a) (c) Mood (a) (b) (c) Mood (a) (c) Stait (a) (c) In t linimit	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% el is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process Seimen is an alloy of <i>Fe</i> , <i>C</i> and <i>Mn</i> <i>Fe</i> , Co and <i>Cr</i> nless steel is an alloy steel of <i>Fe</i> Only <i>W</i> and <i>Cr</i> he manufacture of steel, th g of	(b) (d) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Mg Fe $0.25 - 0.5%$ $3 - 3.5%$ Cast iron Haematite of steel isf steel iscess Fe, Mg and C $Fe, Cu and Nibilowing metalsF 1990; Pb. PET 1999; KCET 20Cr and NiNi and Besemer converter is contain$
	(i) <i>E</i> , (ii) <i>D</i> , (iii) <i>G</i> , (iv) <i>B</i> bd haemoglobin contains the <i>A1</i> <i>Cu</i> centage of carbon in steel is 2.5 - 4.5% 0.2 - 1.5% d is manufactured from Wrought iron (a) and (b) both dern method for the manufact Bessemer process Seimen-Martin's open heart Duplex method L.D. process Segleisen is an alloy of <i>Fe</i> , <i>C</i> and <i>Mn</i> <i>Fe</i> , Co and <i>Cr</i> nless steel is an alloy steel of <i>Fe</i> Only <i>W</i> and <i>Cr</i> he manufacture of steel, th	(b) (d) (b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Mg Fe 0.25 - 0.5% 3 - 3.5% Cast iron Haematite of steel is ccsss Fe, Mg and C Fe, Cu and Ni billowing metals T 1990; Pb. PET 1999; KCET 20 Cr and Ni Ni and Be

			[DCE 1999]
	(a) Bronze	(b)	Brass
	(c) Gun metal	(d)	Bell metal
181.	Steel becomes soft and pliable	by	[MP PET 1989]
	(a) Annealing	(b)	Nitriding
	(c) Tempering	(d)	Case hardening
182.	Most stable oxidation state of in	ron is	
			[AFMC 1976; CPMT 1988]
	(a) +2	(b)	+3
	(c) -2	(d)	
183.	Nickel steel contain % of <i>Ni</i>		[MP PMT/PET 1988]
	(a) $1-5\%$	(b)	3 – 5%
	(c) $6-5\%$	(d)	8 - 5%
184.	Permanent magnet is made from	m	
			[MP PET/PMT 1988; CBSE 1989]
	(a) Cast iron	(b)	Steel
185.	(c) Wrought Iron	(d)	All of these
105.	In nitriding process of steel		[MP PET/PMT 1988; CBSE 1989]
	(a) Steel is heated in an atmo	sphere	
	(b) Steel is made red hot and		
	(c) Steel is made red hot and		
	(d) None of these	· · · ·	0
186.	Iron on reacting with carbon gi	ive	
	(a) FeC		Fe_2C
			-
	(c) Fe_3C	(d)	FeC_2
187.	Iron loses magnetic property at		[KCET 2002]
	(a) Melting point		1000 <i>K</i>
	(c) Curie point	(d)	01
188.	Heat treatment alters the prope	erties o	
	(a) Chemical reaction on heat	ina	[KCET 2002]
	(a) Chemical reaction on heat(b) Partial rusting	ing	
	(c) Change in the residual end	erov	
	(d) Change in the lattice s	0.	e due to differential rate of
100	cooling		
189.			.1 (, 1 , 1
10 91	Pure conc. HNO_3 makes iron	passive	e as the surface is covered with
.0 9.	Pure conc. HNO_3 makes iron protective layer of	passive	
.09.	protective layer of		[Orrisa JEE 2002; EAMCET 1993]
	protective layer of (a) Fe_2O_3	(b)	[Оттіза ЈЕЕ 2002; ЕАМСЕТ 1993] FeO
.09.	protective layer of	(b)	[Orrisa JEE 2002; EAMCET 1993]
190.	protective layer of (a) Fe_2O_3	(b) (d)	[Orrisa JEE 2002; EAMCET 1993] <i>FeO</i> <i>Fe</i> (<i>NO</i> ₃) ₃
-	protective layer of (a) Fe_2O_3 (c) Fe_3O_4	(b) (d)	[Orrisa JEE 2002; EAMCET 1993] <i>FeO</i> <i>Fe</i> (<i>NO</i> ₃) ₃
-	protective layer of (a) Fe_2O_3 (c) Fe_3O_4	(b) (d) ving the	[Orrisa JEE 2002; EAMCET 1993] FeO $Fe(NO_3)_3$ product
-	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 give	(b) (d) ving the (b)	[Orrisa JEE 2002; EAMCET 1993] FeO $Fe(NO_3)_3$ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$
-	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$	(b) (d) ving the (b) (d)	[Orrisa JEE 2002; EAMCET 1993] FeO $Fe(NO_3)_3$ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S
190.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$	(b) (d) ving the (b) (d) ture we	[Orrisa JEE 2002; EAMCET 1993] FeO $Fe(NO_3)_3$ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S
190.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperative cooled slowly, the process is call	(b) (d) ving the (b) (d) ture we lled	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] Fe ₂ O ₃ + FeS FeO + S ell below red heat and is then [Kerala (Med.) 2002]
190.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperative cooled slowly, the process is call (a) Tempering	(b) (d) ving the (b) (d) ture we lled (b)	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] Fe ₂ O ₃ + FeS FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperative cooled slowly, the process is call (a) Tempering (c) Softening	(b) (d) ring the (b) (d) ture wo lled (b) (d)	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] Fe ₂ O ₃ + FeS FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing
190.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperative cooled slowly, the process is call (a) Tempering (c) Softening In smelting of iron, which of the second state of the second stat	(b) (d) ring the (b) (d) ture we lled (b) (d) the foll	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing owing reactions takes place in
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a tempera cooled slowly, the process is cal (a) Tempering (c) Softening In smelting of iron, which of the Blast furnace at $400^{\circ}C - 600$	(b) (d) ring the (b) (d) ture we lled (b) (d) the foll)° C	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] Fe ₂ O ₃ + FeS FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperative cooled slowly, the process is call (a) Tempering (c) Softening In smelting of iron, which of the second state of the second stat	(b) (d) ring the (b) (d) ture we lled (b) (d) the foll)° C	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing owing reactions takes place in
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a tempera cooled slowly, the process is cal (a) Tempering (c) Softening In smelting of iron, which of the Blast furnace at $400^{\circ}C - 600$	(b) (d) (ing the (b) (d) ture wo lled (b) (d) the foll 0° C 03	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ e product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing owing reactions takes place in
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 giv (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperation cooled slowly, the process is call (a) Tempering (c) Softening In smelting of iron, which of the state of t	(b) (d) (ing the (b) (d) ture we lled (d) the foll 0° C 03 SO 2	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ e product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing owing reactions takes place in
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 give (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperative cooled slowly, the process is call (a) Tempering (c) Softening In smelting of iron, which of the Blast furnace at $400^{\circ}C - 600$ (a) $CaO + SiO_2 \rightarrow CaSiO$ (b) $2FeS + 3O_2 \rightarrow 2Fe + 10$ (c) $FeO + SiO_2 \rightarrow FeSiO_2$	(b) (d) (ing the (b) (d) ture we lled (b) (d) the foll $O^{o} C$ O_{3} SO_{2} 3	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing owing reactions takes place in [MP PET 2002]
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 give (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperation cooled slowly, the process is call (a) Tempering (c) Softening In smelting of iron, which of the step is a step is set of the step is a step is set of the ste	(b) (d) (ing the (b) (d) ture we lled (d) the foll $O^{o} C$ O_{3} SO_{2} SO_{2} SO_{2} SO_{2}	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing owing reactions takes place in [MP PET 2002]
190. 191.	protective layer of (a) Fe_2O_3 (c) Fe_3O_4 Red hot iron absorbs SO_2 give (a) $FeS + O_2$ (c) $FeO + FeS$ If steel is heated to a temperative cooled slowly, the process is call (a) Tempering (c) Softening In smelting of iron, which of the Blast furnace at $400^{\circ}C - 600$ (a) $CaO + SiO_2 \rightarrow CaSiO$ (b) $2FeS + 3O_2 \rightarrow 2Fe + 10$ (c) $FeO + SiO_2 \rightarrow FeSiO_2$	(b) (d) (ing the (b) (d) ture we lled (d) the foll $O^{o} C$ O_{3} SO_{2} SO_{2} SO_{2} SO_{2}	[Orrisa JEE 2002; EAMCET 1993] FeO Fe(NO ₃) ₃ product [Orrisa JEE 2002] $Fe_2O_3 + FeS$ FeO + S ell below red heat and is then [Kerala (Med.) 2002] Hardening Annealing owing reactions takes place in [MP PET 2002]

	(a) Laterite (b) Bauxite
	(c) Pedalfers (d) Clay
194.	German silver is an alloy of [EAMCET 1979;
	CPMT 1986, 93; MP PET/PMT 1998; UPSEAT 1999; CBSE PMT 2000; KCET 2000; MP PMT 2001]
	(a) Copper, zinc and nickel (b) Copper and silver
	(c) Copper, zinc and tin (d) Copper, zinc and silver
195.	Iron is rendered passive by the action of
	[IIT 1982; MP PET 1985; MP PMT 1987; DPMT 1984; KCET 1993]
	(a) Conc. H_2SO_4 (b) Conc. H_3PO_4
	(c) Conc. <i>HCl</i> (d) Conc. <i>HNO</i> ₃
196.	Iron sheets are galvanized by depositing a coating of or In
	galvanisation, iron surface is coated with
	[MP PET 1985, 86, 87, 89, 92, 96; NCERT 1980; Bihar CEE 1995]
	(a) Zinc (b) Tin
	(c) Chromium (d) Nickel
197.	Chemical formula of rust is [BHU 1986; MP PET 1990]
	(a) FeO (b) Fe_3O_4
	(c) $Fe_2O_3.xH_2O$ (d) $FeO.xH_2O$
198.	Heating steel to bright redness and then cooling suddenly by
	plunging it into oil or water, makes it[MP PET 1990](a) Hard and pliable(b) Soft and pliable
	(c) Soft and brittle (d) Hard and brittle
199.	Which of the following is found in body [CPMT 1975]
	(a) <i>Pb</i> (b) <i>Fe</i>
	(c) Cd (d) Al
200.	Which of the following pairs of elements might form an alloy [NCERT 1981]
	(a) Zinc and lead (b) Iron and mercury
	(c) Iron and carbon (d) Mercury and platinum
201.	Ferrous sulphate on strong heating gives
	(a) SO_2 (b) $Fe_2(SO_4)_3$
	(c) $FeO + SO_3$ (d) $Fe_2O_3 + SO_2 + SO_3$
202.	Green vitriol is [DPMT 1985; BHU 1997; RPET 1999; JIPMER 2002]
	(a) $CuSO_4.5H_2O$ (b) $FeSO_4.7H_2O$
	(c) $CaSO_4.2H_2O$ (d) $ZnSO_4.7H_2O$
203.	When conc. sulphuric acid is added slowly to a solution of ferrous
	sulphate containing nitrate ion, a brown colour ring is formed. The composition of the ring is [CPMT 1989]
	(a) $[Fe(H_2O)_5 NO]SO_4$ (b) $FeSO_4.NO_2$
	(c) $Fe[(H_2O)_5](NO_3)_2$ (d) None of these
204.	F_2 is the formed by reacting $K_2 MnF_6$ with [AIIMS 2005]
	(a) SbF_5 (b) MnF_3
	(c) $KSbF_6$ (d) MnF_4
205.	Railway wagon axles are made by heating rods of iron embedded in
	charcoal powder. The process is known as
	[CPMT 1972; DCE 2000; KCET 2003; UPSEAT 2001] (a) Case hardening (b) Sheradizing
	(a) Case hardening(b) Sheradizing(c) Annealing(d) Tempering
206.	The alloy of steel that is used in making automobile parts and
	utensils [EAMCET 1979; MP PMT 1992]
	(a) Stainless steel (b) Nickel steel
207.	(c) Tungstun steel (d) Chromium steel Which of the following has lowest percentage of carbon
207.	much of the following has lowest percentage of carbon

r www.studentbro.in

Get More Learning Materials Here : 📕


	[DPMT 1984; CPMT 1989, 91, 94; KCET 2000] (a) Cast iron (b) Wrought iron			More s Hard a
208.	(c) Steel(d) All have same percentageGalvanisation is the[CPMT 1980, 86, 91, 99;	222.	Mark the steel in which carbon % is l(a) Mild steel(b)	highest Hard s
	MP PET/PMT 1988; Pb. PET 1999]		(c) Alloy steel (d)	None o
	(a) Deposition of Zn on Fe	223.	Mark the variety of iron which has hi	•
	(b) Deposition of Al on Fe		() U	Cast ir
	(c) Deposition of Sn on Fe	224.	(c) Wrought iron (d) Bessemer converter is used in the ma	Steel
	(d) Deposition of Cu on Fe	224.	bessemer converter is used in the ma	maractar
209.	Tempered steel is		(a) Pig iron (b)	Steel
-	(a) Soft and pliable		() U	Cast ir
	(b) Hard and brittle	225.	Steel contains	[M
	(c) Neither so hard nor so brittle		(a) $Fe + C + Mn$ (b)	Fe +
	(d) Very soft	-	(c) $Fe + Mn$ (d)	
210.	Best quality of steel is manufactured by [BHU 1996]	226.	Steel differs from pig iron and wrought	iron in ti
	(a) Siemen –Martin's open hearth process		(a) No carbon at all	
	(b) Electrical process		(b) Less carbon than either	
	(c) Bessemer process		(c) More carbon than either	
	(d) Blast furnace		(d) An amount of carbon intermedia	ate betwe
11.	The presence of Si in steel gives it	227.	Finely divided iron combines with Ce	O to giv
	(a) Fibrous structure (b) Silicate type structure		(a) $Fe(CO)_5$ (b)	$Fe_2(0)$
	(c) Sheet type structure (d) None of these		(c) $Fe_3(CO)_{12}$ (d)	Fe(C
212.	The presence of Mn in steel produces	228.		KCET 199
	(a) Elasticity	220.	(a) $FeSO_4.7H_2O$	
	(b) Increases tensile strength			
	(c) Both (a) and (b)		(b) $Fe(NH_4)SO_4.6H_2O$	
	(d) None of these		(c) $(NH_4)_2 SO_4 . FeSO_4 . 6H_2O$	
213.	Presence of Cr in steel makes it		(d) $[Fe(NH_4)_2](SO_4)_2.6H_2O$	
	(a) Resistant to chemical action(b) Useful for making cutlery	229.	Mohr's salt is	
	(c) Increases chemical action	229.		Acid sa
	(d) (a) and (b) both		(c) Basic salt (d)	
214.	The addition of metals like Cr, Mn, W and Ni to ordinary steel	230.	An example of double salt is	
•	makes it	•	[CPMT 19	86; CBSE
	(a) More useful		(a) Bleaching powder (b)	$K_4[F$
	(b) Alters the properties of ordinary steel		(c) Hypo (d)	Potash
	(c) Both (a) and (b)	231.	The passivity of iron in concentrated	
	(d) None of these			
215.	Stainless steel is non-corrosive. This character is more prominent in		(a) Ferric nitrate coating on the met	
	(a) <i>Mn</i> steel (b) Ordinary steel		(b) Ammonium nitrate coating on the	
16	(c) Ti steel (d) All of these		(c) A thin oxide layer coating on the	e metal
216.	When little vanadium is mixed with steel, it becomes (a) More hard (b) More tensility	000	(d) A hydride coating on the metal	
	(c) Both (a) and (b) (d) No effect	232.	The action of steam on heated iron is	represei
217.	To obtain steel entirely free from sulphur and phosphorus, the		(a) $3Fe + 4H_2O \rightarrow Fe_3O_4 + $	н
	process used is			-
	(a) Electrothermal process (b) Bessemer process		(b) $2Fe + 3H_2O \rightarrow Fe_2O_3 + 3H_2O$	I_2
	(c) Open-hearth process (d) Duplex process		(c) $Fe + H_2O \rightarrow FeO + H_2$	
218.	Stainless steel contains		(d) $2Fe + H_2O + O_2 \rightarrow Fe_2O_3$	$+H_2$
		233.	Which metal is used to make alloy st	-
	The chief constituents of steel made in India are	233.	helmets	
219.	[MP PMT/PET 1988]		(a) <i>Al</i> (b)	Мп
219.			• • • • • • • • • • • • • • • • • • • •	Pb
219.	(a) Mn and Cr (b) Al and Zn			-
:19.		234.	Rusting on iron needs	_
-	(a) Mn and Cr (b) Al and Zn	234.		_
-	 (a) Mn and Cr (b) Al and Zn (c) V and Co (d) Ni and Mg 	234.	Rusting on iron needs (a) Dry air (b) Air and water	
219. 220.	(a) Mn and Cr (b) Al and Zn (c) V and Co (d) Ni and Mg Which of the following is used to prepare medical instruments	234.	 Rusting on iron needs (a) Dry air (b) Air and water (c) Distilled water and carbon dioxid 	
-	 (a) Mn and Cr (b) Al and Zn (c) V and Co (d) Ni and Mg Which of the following is used to prepare medical instruments (a) Cast iron (b) Wrought iron 	234. 235.	Rusting on iron needs (a) Dry air (b) Air and water	de

(a)				
	Mild steel	• •	Hard steel	
• •	Alloy steel	· · ·	None of these	
	k the variety of iron which ha		۰.	pint
(a)	Pig iron	• •	Cast iron	
` '	Wrought iron	(d)	Steel	
Bess	emer converter is used in the	e man	utacture of	
(a)	Dig iron	(L)	Staal	[CPMT 1991]
	Pig iron		Steel Cost iron	
	Wrought iron I contains	(d)	Cast iron	989; KCET 2000
		(1)	•	
()	Fe + C + Mn	()	Fe + C + Al	
· /	Fe + Mn	· · ·	Fe + Mn + C	
Stee	differs from pig iron and wro	ught i	on in that it co	
()	N 1 . 11			[KCET 1991]
(a) (L)	No carbon at all			
(b)	Less carbon than either More carbon than either			
(c) (d)	An amount of carbon intern	adiat	a hatwaan two	
	ly divided iron combines with		U	[MNR 1994]
(a)	$Fe(CO)_5$	(b)	$Fe_2(CO)_9$	
(c)	$Fe_3(CO)_{12}$	(d)	$Fe(CO)_6$	
	r's salt is		0	000. A11140 000
		Įκ		999; AIIMS 2000
(a)	$FeSO_4.7H_2O$			
(b)	$Fe(NH_4)SO_4.6H_2O$			
		0		
	$(NH_4)_2 SO_4 . FeSO_4 . 6H$	-		
(d)	$[Fe(NH_4)_2](SO_4)_2.6H_2$	0		
Moh	ır's salt is			[MNR 1986
	Normal salt	(b)	Acid salt	
(c)	Basic salt		Double salt	
` ´	example of double salt is	. /		
	•			Ra: Roorkee 1990
	ICPN	IT 1980	5; CBSE PMT 198	
(a)			5; CBSE PMT 198 $K_{4}[Fe(CN)]$	
	Bleaching powder	(b)	$K_4[Fe(CN)]$	
(c)	Bleaching powder Hypo	(b) (d)	K ₄ [Fe(CN), Potash alum	₆]
(c)	Bleaching powder	(b) (d)	K ₄ [Fe(CN), Potash alum	₆] e to
(c) The	Bleaching powder Hypo passivity of iron in concentra	(b) (d) nted n	K ₄ [<i>Fe</i> (<i>CN</i>), Potash alum itric acid is due	₆] e to
(c) The (a)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the	(b) (d) ited n	$K_4[Fe(CN)]$ Potash alum itric acid is dua	₆] e to
(c) The (a) (b)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating	(b) (d) ited n meta on the	K ₄ [Fe(CN) ₀ Potash alum itric acid is duo l 2 metal	₆] e to
(c) The (a) (b) (c)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating A thin oxide layer coating of	(b) (d) ated n meta on the	K ₄ [Fe(CN) ₀ Potash alum itric acid is duo l 2 metal	₆] e to
(c) The (a) (b) (c) (d)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating A thin oxide layer coating on A hydride coating on the mo	(b) (d) nted n meta on the n the etal	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due l e metal metal	₆] e to
(c) The (a) (b) (c) (d)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating A thin oxide layer coating of	(b) (d) nted n meta on the n the etal	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due l e metal metal	₆] е to [МР РМТ 1994]
(c) The (a) (b) (c) (d) The	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating A thin oxide layer coating on A hydride coating on the ma action of steam on heated iro	(b) (d) atted n meta on the etal on is r	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due l e metal metal represented as	₆] е to [МР РМТ 1994
(c) The (a) (b) (c) (d) The	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating A thin oxide layer coating on A hydride coating on the mo	(b) (d) atted n meta on the etal on is r	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due l e metal metal represented as	₆] е to [МР РМТ 1994]
(c) The (a) (b) (c) (d) The (a)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$	(b) (d) inted n meta on the etal on is n + 4 <i>H</i>	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due le metal metal represented as	₆] е to [МР РМТ 1994]
(c) The (a) (b) (c) (d) The (a) (b)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3$	(b) (d) inted n meta on the etal on is n + 4 <i>H</i>	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due le metal metal represented as	₆] е to [МР РМТ 1994]
(c) The (a) (b) (c) (d) The (a) (b)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$	(b) (d) inted n meta on the etal on is n + 4 <i>H</i>	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due le metal metal represented as	₆]
(c) The (a) (b) (c) (d) The (a) (b) (c)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow Fe_2O_3 \rightarrow Fe + H_2O \rightarrow FeO + H_2$	(b) (d) a meta n a meta n the $a talb n is n+ 4 H+ 3 H$	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due the metal represented as	6] e to [MP PMT 1994
(c) The (a) (b) (c) (d) The (a) (b) (c) (d)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating on A thin oxide layer coating on A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$	(b) (d) inted n meta on the retal on is n + 4H + 3H $O_3 +$	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as T_2 T_2 H_2	6] [MP PMT 1994 [MP PMT 1994
(c) The (a) (b) (c) (d) The (a) (b) (c) (d) Whi	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$ ch metal is used to make allo	(b) (d) inted n meta on the retal on is n + 4H + 3H $O_3 +$	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as T_2 T_2 H_2	6] e to [MP PMT 1994 [MP PMT 1994
(c) The (a) (b) (c) (d) The (a) (b) (c) (d) Whi helm	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$ ch metal is used to make allo	(b) (d) inted n n meta on the etal on is n + 4H + 3H $O_3 +$ oy stee	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as I_2 I_2 H_2 el for armour p	6] e to [MP PMT 1994 [MP PMT 1994
(c) The (a) (b) (c) (d) The (a) (c) (d) Whi heln (a)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$ ch metal is used to make allowed https://www.action.com/action/acti	(b) (d) inted n meta on the etal on is n + 4H + 3H $O_3 +$ by stee (b)	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as I_2 I_2 H_2 el for armour p <i>Mn</i>	6] e to [MP PMT 1994 [MP PMT 1994
(c) The (a) (b) (c) (d) (c) (d) (c) (d) Whi helm (a) (c)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating on A thin oxide layer coating on A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$ ch metal is used to make allowed tets <i>Al</i> <i>Cr</i>	(b) (d) inted n n meta on the etal on is n + 4H + 3H $O_3 +$ oy stee	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as I_2 I_2 H_2 el for armour p <i>Mn</i>	6] e to [MP PMT 1994] [MP PMT 1994 Dlates, safes and [KCET 2003]
(c) The (a) (b) (c) (d) The (a) (c) (d) Whi heln (a) (c) Rust	Bleaching powder Hypo passivity of iron in concentration Ferric nitrate coating on the Ammonium nitrate coating of A thin oxide layer coating of A hydride coating on the ma- action of steam on heated iron $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$ ch metal is used to make allow tets <i>Al</i> <i>Cr</i> cing on iron needs	(b) (d) inted n meta on the etal on is n + 4H + 3H $O_3 +$ by stee (b)	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as I_2 I_2 H_2 el for armour p <i>Mn</i>	6] e to [MP PMT 1994] [MP PMT 1994 Dlates, safes and [KCET 2003]
(c) The (a) (b) (c) (d) The (a) (c) (d) Whithelm (a) (c) Rust (a)	Bleaching powder Hypo passivity of iron in concentra Ferric nitrate coating on the Ammonium nitrate coating on A thin oxide layer coating on A hydride coating on the ma action of steam on heated iro $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$ ch metal is used to make allowed the s <i>Al</i> <i>Cr</i> ing on iron needs Dry air	(b) (d) inted n meta on the etal on is n + 4H + 3H $O_3 +$ by stee (b)	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as T_2 H_2 el for armour p <i>Mn</i>	6] e to [MP PMT 1994] [MP PMT 1994 Dlates, safes and [KCET 2003]
(c) The (a) (b) (c) (d) The (a) (c) (d) Whi heln (a) (c) Rust (a) (b)	Bleaching powder Hypo passivity of iron in concentration Ferric nitrate coating on the Ammonium nitrate coating on A thin oxide layer coating on A hydride coating on the material action of steam on heated iron $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow Fe_2H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow FeO + H_2$ ing on iron needs Dry air Air and water	(b) (d) inted n meta on the etal on is n + 4 H + 3 H $O_3 +$ oy stee (b) (d)	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as T_2 el for armour p <i>Mn</i> <i>Pb</i>	6] e to [MP PMT 1994] [MP PMT 1994 Dlates, safes and [KCET 2003]
(a) (b) (c) (d) The (a) (c) (d) Whin (a) (c) Rust (a) (b) (c)	Bleaching powder Hypo passivity of iron in concentration Ferric nitrate coating on the Ammonium nitrate coating on A thin oxide layer coating on A hydride coating on the material action of steam on heated iron $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow Fe_2H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow FeO + H_2$ ing on iron needs Dry air Air and water Distilled water and carbon of	(b) (d) inted n meta on the etal on is n + 4 H + 3 H $O_3 +$ oy stee (b) (d)	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as T_2 el for armour p <i>Mn</i> <i>Pb</i>	6] e to [MP PMT 1994] [MP PMT 1994 Dlates, safes and [KCET 2003]
(c) The (a) (b) (c) (d) The (a) (b) (c) Rust (a) (b) (c) (d)	Bleaching powder Hypo passivity of iron in concentration Ferric nitrate coating on the Ammonium nitrate coating on A thin oxide layer coating on A hydride coating on the ma- action of steam on heated iron $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow$ $Fe + H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow Fe_2$ ch metal is used to make allow the metal is	(b) (d) inted n meta on the etal on is n + 4H + 3H $O_3 + e$ (b) (d) lioxido	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as T_2 el for armour p <i>Mn</i> <i>Pb</i>	6] e to [MP PMT 1994] [MP PMT 1994 Dlates, safes and [KCET 2003]
(c) The (a) (b) (c) (d) (c) (d) (c) (d) Whi heln (a) (c) Rust (a) (b) (c) (d)	Bleaching powder Hypo passivity of iron in concentration Ferric nitrate coating on the Ammonium nitrate coating on A thin oxide layer coating on A hydride coating on the material action of steam on heated iron $3Fe + 4H_2O \rightarrow Fe_3O_4$ $2Fe + 3H_2O \rightarrow Fe_2O_3 \rightarrow Fe_2H_2O \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow FeO + H_2$ $2Fe + H_2O + O_2 \rightarrow FeO + H_2$ ing on iron needs Dry air Air and water Distilled water and carbon of	(b) (d) inted n meta on the etal on is n + 4H + 3H $O_3 + e$ (b) (d) lioxido	K_4 [<i>Fe</i> (<i>CN</i>)] Potash alum itric acid is due e metal metal represented as T_2 el for armour p <i>Mn</i> <i>Pb</i>	6] [MP PMT 1994] [MP PMT 1994]

(b) More springy than before (d) Hard and brittle

Get More Learning Materials Here : 💻

Readily reacts	(b)	Slowly reacts
----------------	-----	---------------

- Becomes passive (d) Gives ferrous nitrate
- 236. An alloy which does not contain copper is [DPMT 1984]
 - (a) Solder (b) Bronze

(a)

(c)

- (c) Brass (d) Bell metal
- **237.** Which one of the following statements shows the correct percentage of carbon in steel, pig iron and wrought iron
 - (a) Steel containing less than 0.15% carbon; wrought iron 0.15 to 2.0% carbon; and pig iron over 2% carbon
 - (b) Pig iron less than 0.15% carbon; wrought iron 0.15 to 2.0% carbon; and steel over 2% carbon
 - (c) Wrought iron less than 0.15% carbon; steel 0.15 to 2.0% carbon; and pig iron over 2% carbon
 - (d) Wrought iron less than 0.15% carbon; pig iron 0.15 to 2.0% carbon; and steel over 2.0% carbon
- **238.** In the Bessemer and open-hearth process for the manufacture of steel, which one of the following is used for the removal of carbon in part or whole

	Bessemer	Open– hearth
(a)	Ferric oxide	Air
(b)	Air	Ferric oxide
(c)	Oxygen	Scrap iron
(d)	Air	Scrap iron

- 239. About the basic open hearth process, which statement is wrong
 - (a) Limestone is added to the charge
 - (b) Phosphorus impurity cannot be removed by this process
 - $(c) \quad \mbox{Carbon content of the steel can be uniformly controlled over a series of batches}$
 - (d) Iron scrap can be utilized
 - Which of the following statements is wrong
 - (a) Heating to a high temperature and then cooling suddenly, *e.g.* by dipping in water, makes steel hard and brittle
 - (b) Steel can be softened by heating it to a high temperature for a prolonged time and then cooling slowly. This is called quenching.
 - (c) Tempering of hardened steel is done by heating it to just below red heat at controlled temperature and duration
 - (d) Phosphorus impurity makes steel 'cold short'
- **241.** Bell metal is an alloy of

240.

[DPMT 1990, 96; CBSE PMT 1999; Kerala PMT 2002]

- (a) Cu, Zn and Sn (b) Cu, Zn and Ni
- (c) Cu and Zn (d) Cu and Sn
- 242. Turnbull's blue is [Bihar CEE 1995]
 - (a) Ferricyanide (b) Ferrous ferricyanide
 - (c) Ferrous cyanide (d) Ferri-ferrocyanide
- 243. Addition of high proportions of manganese makes steel useful in making rails of rail-roads because manganese
 [IIT 1998]
 - (a) Gives hardness to steel
 - (b) Helps the formation of oxides of iron
 - (c) Can remove oxygen and sulphur
 - (d) Can show highest oxidation state of +7
- 244. Copper displaces which of the metal from their salt solutions
 [CPMT 1988]

(a)	$AgNO_3$	(b)	$ZnSO_{A}$
(4)	1181103	(0)	$2\pi 5 \circ 4$

- (c) $FeSO_4$ (d) All of these
- 245. Which of the following statement(s) is(are) correct with reference to the ferrous and ferric ions [11T 1998]
 - (a) Fe^{3+} gives brown colour with potassium ferricyanide
 - (b) Fe^{2+} gives blue precipitate with potassium ferricyanide

()	0	•	,
(d)	Fe^{2+} gives brown colour	with a	mmonium thiocyanate
Whi	ch of the following element	const	itutes a major impurity in pig
iron			[CBSE PMT 1998]
(a)	Silicon	(b)	,0
(c)	Sulphur	(d)	Graphite
Ann	ealing is		[Pune CET 1998; AFMC 2002]
(a)	Heating steel in nitrogen an	nd coo	ling
(b)	Heating steel to bright redu	ness ar	nd then cooling slowly
(c)	Heating wrought iron with	carbo	n to redness
(d)	Heating steel to high ten plunging in water	nperat	ure and cooling suddenly by
ln e	lectroplating, the metal that	is not	used for plating is
			[Pune CET 1998]
(a)	Fe	(b)	Zn
(c)	Ni	(d)	Au
Whi	ch one of the following is a	wrong	statement about cast iron[KCET 1998]
(a)	It is also called pig iron		
(b)	It contains about 4.5% carl	oon	
(c)	lt is corrosion resistant		
(d)	It contracts on cooling		
mag	pipes lying under acidic s nesium for protection to iron against corros	from	6 6
			[KCET 1998]
(a)	Is more readily converted in	nto po	sitive ions
(b)	Is lighter than iron		
(c)	Forms a corrosion-resistant	: alloy	with iron
(d)	Prevents air from reaching	the su	irface of iron
Fe	S_2 is		[RPET 1999]
	-		-

 Fe^{3+} gives red colour with potassium thiocyanate

251.	FeS_2 is			[RPET 1999]
	(a) Artificial silver	(b)	Fool's gold	
	(c) Mohr's salt	(d)	Cast iron	
252.	Stainless steel is an alloy of irc	on with		[DCE 1999]
	(a) 8% Cr, 50% Mn	(b)	10% Ni, 2% Mn	
	(c) 2% Cr, 3% C	(d)	12% Cr, 1% N	

- 253.
 The chemical processes in the production of steel from haematite ore involve

 [IIT-JEE (Screening) 2000]
 - (a) Reduction

246.

247.

248.

249.

250.

(b) Oxidation

(a)

(a)

- (c) Reduction followed by oxidation
- (d) Oxidation followed by reduction
- 254. The protection of steel by chrome plating is due to
 - Cathodic protection
 - (b) Anodic protection
 - (c) Covering of steel surface
 - (d) Formation of alloy with iron
- 255. The most convenient method to protect bottom of ship made of iron is [CBSE PMT 2001; Kerala (Engg.) 2002]
 - (a) White tin platting

 $Fe(CO)_5$

- (b) Coating with red lead oxide
- (c) Connecting with '*Pb*' block
- (d) Connecting with 'Mg' block
- **256.** Carbon monoxide reacts with iron to form
 - [KCET (Med.) 2001] (b) FeCO₂

🕀 www.studentbro.in

[MP PMT 2001]

- (c) FeO+C (d) Fe_2O_3+C
- 257. Iron is extracted from magnetite by reduction with

Get More Learning Materials Here :

		[UPSEAT	° 2001]	(c)	Cu, Zn and Ni	(d)	Cu and Si	n
	(a) <i>H</i> ₂	(b) <i>C</i>	271.	Besi	des Zn and Cu , germ	nan silver co	ontains the m	etal
	(c) Mg	(d) <i>Al</i>	-,	Dec.		idir sitter -		[MP PET 1997]
258.	Malachite is a mineral of [MP PMT]	990; MP PET 1992, 98, 2000; MP PMT	8001	(a)	Sn	(b)	Ag	-
	(a) Zn	(b) <i>Fe</i>	[990]	(c)	Ni	(d)	Mg	
	(c) Hg	(d) <i>Cu</i>	272.	Whi	ch metal is present in b			n silver
259.	The most important oxidatio	n state of copper is			[CPA	VT 1997; AFA	NC 1998; Alim	S 1999; J & K 2005]
		(I) 2	` 1987]	(a)	Zn	(b)	Mg	
	(a) $+ 1$ (c) $+ 3$	(b) + 2 (d) + 4		(c)	Си	(d)	Al	
260.	. ,	en reacts with copper, the gas ob	tained 273.	Whi	ch of the following is w	rongly mate		
	is						[KCET (Med.) 1999]
	(a) N_2	(b) Nitrous oxide		. /	German silver $Cu + 2$			
	(c) <i>NO</i>	(d) NO_2			Alnico $Fe + Al + Ni$			
261.		perty is not expected to be show	vn by	(c)	Monel metal $Cu + Zn$			
	copper [MF	PET/PMT 1988; NCERT 1975; MP PET	· 1989]		Duralumin $Al + Cu +$	-		
	(a) High thermal conductiv		274.	An e	extremely hot copper wi	ire reacts w	ith steam to	give [CPMT 1988]
	(b) Low electrical conductiv(c) Ductility	ity		(a)	CuO	(b)	Cu_2O	
	(c) Ductility (d) Malleability						CuO_2	
262.		gives more than one chloride		(c)	<i>Cu</i> ₂ <i>O</i> ₂		-	
	(a) <i>Cu</i>	(b) <i>Al</i>	275.	Fror				over copper is[MP PET 1992
	(c) Ag	(d) <i>Na</i>		(a)	Sodium	()	lron	
263.	The metal which is the best		1006]	(c)	Silver	()	Hg	
	(a) Iron	(b) Copper	1990] 276.	Сор	per sulphate is commerci	ially made fr	om copper sci	
	(c) Silver	(d) Aluminium		(2)	Dissolving in hot conc.	н бо		[CPMT 1973]
264.	Paris green is	1 . 1						
		arbonate and copper nitrate cetate and copper arsinite			The action of dil. H_2		ir	
		cetate and copper sulphate		(c) (d)	Heating with sodium s Heating with sulphur	sulphate		
	(d) Double salt of copper a	nd silver nitrate	277.	. ,	e .	vhile cupric	ion is colour	ed because[EAMCET 1992; E
265.	Reaction between the followi	ng pairs will produce H_2 except[CPMT 1973; CBSE	PMT ig	98] Both have unpaired ele			
	(a) Na + ethyl alcohol	(b) $Fe +$ steam		(b)	Cuprous ion has a cor			cupric ion has an
	(c) $Fe + H_2SO_4$ (aq.)	(d) $Cu + HCl$ (aq.)			incomplete d -orbital	•		
266.	Which of the following is con	-	1995]	(c)	Both have half-filled p	o and d -or	bitals	
	(a) Gun metal : $Cu + Zn +$			(d)	Cuprous ion has inco	mplete d -	-orbital and	cupric ion has a
	(b) Duralumin : $Al + Cu + C$	0 0			completed d -orbital			
	(c) German silver : $Cu + 2$	Cn + C	278.	A bl	ue colouration is not ob	otained whe	n	
267.	(d) Solder : $Pb + Al$ Solder is an alloy of	[11T 1995; MP PET 1995; AFMC	2005]	(a)	Ammonium hydroxide	dissolves in	CODDEr suln	[CBSE PMT 1989] hate
	(a) 70% lead, 30% tin	(b) 30% lead, 70% tin		(a) (b)	Copper sulphate soluti			
	(c) 80% lead, 20% tin	(d) 90% <i>Cu</i> , 10% tin	.1	(b) (c)	Ferric chloride reacts v			
268.	Zinc forms two important a Metals present in them main	alloys, (i) Brass and (ii) German ly are	silver.	(c) (d)	Anhydrous $CuSO_4$ i			-
	•	in (ii) zinc, silver and nickel	050	. ,				T CUSO MAND 1000 PL
	() ()	in (ii) zinc, nickel and cobalt	279.				rect regardin	g CuSO 4 [MNR 1992; Pb. 1
		and in (ii) zinc, copper and nickel ninium; and in (ii) zinc, nicke	and	• • •	It reacts with <i>KI</i> to get It reacts with <i>KCl</i> to	-	Cl.	
	aluminium		una					. 0
269.	One of the constituent of get			(c)	It reacts with $NaOH$			<i>i</i> ₂ <i>O</i>
		[IIT 1980; Kurukshetra CEE 1998; DCE	: 1999] 280.		It gives <i>CuO</i> on stro per sulphate solution re			5
	(a) Ag	(b) Cu	200.	Cop				ء 7 1996; A11MS 1999;
	(c) Mg	(d) Al				<i>/2</i> 1	a ar	CBSE PMT 2002]
270.	<i>Gun metal</i> is an alloy of	[MP PMT 1990; CPMT	` 1997]	(a)	$Cu(CN)_2$	(b)	CuCN	
	(a) Cu and Al	(b) Cu, Sn and Zn		(c)	$K_2[Cu(CN)_4]$	(d)	$K_3[Cu(CN)]$	$()_{A}$

81.		cess of NH_4OH is adured complex which is	ded to C	USO ₄ solu	ution, it forr	ns blue 29	(c) 2 Hor	<i>Pt</i> n silver is	(d)	Ni	
	colou	ired complex which is	[MP PMT 197	1, 79; Bihar C	-	з. по (а)	AgCl	(b)	Ag	
					ET 1999; AFN	IC 2001]			(b)	-	
		$Cu(NH_3)_4 SO_4$		$Cu(NH_3$			(c)	AgBr	(d)	CH ₃ COOAg	
	(c)	$Cu(NH_4)_4 SO_4$	(d)	$Cu(NH_4$	$)_2 SO_4$	29	4. Wh	ich of the following	is used in phot	ography	
82.		h of the following	metals	displaces	SO_2 gas	from	()		(1)	4 D	[CPMT 1980
		entrated sulphuric acid		7			(a)	AgCl	(b)	AgBr	
	(a)	0	(b)				(c)	AgI	(d)	Ag_2O	
33.	The r	<i>Cu</i> method of zone refining	of metals		the princip		5. Silv	er halides are used [CBSE PMT 2003]			MP PMT 1989
	• •	Greater solubility of th the solid	e impurit	y in the m	olten state	than in	(a)	They are photoser	nsitive		
		Greater mobility of the	pure met	al than that	of the impu	rity	(b)	Soluble in hypo			
		Higher melting point of	•		•	-	(c)	Soluble in NH_4C	ЭH		
		metal					(d)	Soluble in acids			
		Greater noble characte impurity	r of the	solid meta	l than that	of the 29	6. Ag	gCl when heated w			
34.		etal when left expose		•			•		-	MP PET 1989; MP	PMT 1982, 84
		mes coated with green b Copper		onate. The r Nickel	netal in que	stion is[NDA 199	9] (a)	Ag_2O	(b)	Ag	
		Silver		Zinc			(c)	Ag_2CO_3	(d)	NaAgCO ₃	
35.	When	n $CuSO_4$ solution is a	dded to I	$K_4[Fe(CN)]$) ₆], the form	nula of 29	7. Ag	NO ₃ gives a red p	pt. with		
		roduct formed is			Bihar Cl	5		,		(T 1972; BHU 1978;	
	(a)	$Cu_2Fe(CN)_6$	(b)	KCN			(a)	KI	(b)	NaBr	
	(c)	$Cu(CN)_3$	(d)	$Cu(CN)_2$	2		(c)	NaNO ₃	()	$K_2 CrO_4$	
6.	Mni	O_4^- on reduction in acid	lic mediu	n forms				-		$K_2 C / O_4$	
	11110	⁴ on reduction in act	ne meaia	11 1011113	[MP PN	29 IT 1005]		er nitrate is prepare	2		[CPMT 1984
			<i>(</i> 1)	++	[////	[[666] 1]	(a)	The action of only	γ conc. HNO_3	on silver	
	(a)	MnO_2	(b)	Mn^{++}			(b)	Heating silver oxic	de with NO_2		
	(c)	$MnO_4^{}$	(d)	Mn			(c)	The action of hot	dil. HNO3 or	silver	
37.	Whic	h of the following me	tals will	not react	with a solu	tion of	(d)	Dissolve Ag in a			
	CuS	SO 4			[CPN	T 1996]	()	0	qua regia		
	(a)	Fe	(b)	Zn		29	9. Ag	g <i>Cl</i> is soluble in		-	EAMCET 1992
	(c)	Mg	(d)	Hg			(a)	Aqua–regia	(b)	H_2SO_4	
38 .	Whic	h one of the following n	netals will	not reduce	-		(c)	HCl	(d)	NH_3 (aq)	
		9	<i>(</i> 1)		[EAMCE	T 1997] 30	0. Wh	ich of the following	is least soluble	in water	
	(a)	Ca Cu	(b)	Fe L:						[NCERT 1974, 78;	MNR 1984, 89
89.	(c) The r	<i>Cu</i> reaction, which forms ni	(d) tric oxide	Li			(a)	AgI	(b)	AgCl	
59.	The I	reaction, which forms in		, 13	[KCET (Med	l.) 2001]	(c)	AgBr	(d)	Ag_2S	
	(a)	C and N_2O	(b)	Cu and	• •	30	I. Pho	tographic films and	plates have an	essential ingredie [CPMT 1980; C	
	(c)	Na and NH_3	(d)	Cu and	HNO_3		(a)	Silver nitrate	(b)	Silver bromide	
	A cu	prous ore among the fol	lowing is		[KCE	T 2002]	(c)	Sodium chloride	(d)	Oleic acid	
) 0.		Cuprite	(b) (d)	Malachite Azurite		30	2. Wh	ich of the following	does not react	with AgCl	[A11MS 1997
) 0.	. ,		(u)		moisture	green	(a)	NaNO ₃	(b)	Na_2CO_3	L
	(c)	Chalcopyrites	es in co	nearer mien				-		NH ₄ OH	
	(c) Wher	n metallic copper com lery/ pasty coating can b		er it. This i	s chemically		(c)	$Na_2S_2O_3$	(d)	MA ₄ OH	
	(c) Wher powd as	n metallic copper com lery/ pasty coating can b	oe seen ov			C 2002]	- 114	1 0.1 0.1		1	1
	(c) Wher powd as (a)	n metallic copper com lery/ pasty coating can b Copper sulphide - Copp	oe seen ov oer carbor	ate		C 2002] 30		ich one of the follov e	wing is known	_	
	(c) When powd as (a) (b)	n metallic copper com lery/ pasty coating can b Copper sulphide - Copp Copper carbonate - Cop	oe seen ov oer carbor oper sulpł	nate		-	3. Wh stat (a)		wing is known (b)	as lunar caustic y [MP PMT 199 9 Silver sulphate	
	(c) Wher powd as (a) (b) (c)	n metallic copper com lery/ pasty coating can b Copper sulphide - Copp Copper carbonate - Cop Copper carbonate - Cop	oe seen ov oer carbor oper sulpl oper hydr	nate nate oxide		-	stat	e		[MP PMT 1999	; JIPMER 2002
90. 91.	(c) Wher powd as (a) (b) (c) (d)	n metallic copper com lery/ pasty coating can b Copper sulphide - Copp Copper carbonate - Cop Copper carbonate - Cop Copper Sulphate - Copp	oe seen ov oer carbor oper sulph oper hydro oer sulphi	nate nate oxide de		-	stat (a) (c)	e Silver nitrate	(b) (d)	[MP PMT 1999 Silver sulphate Sodium sulphate	9; JIPMER 2002 e
	(c) Wher powd as (a) (b) (c) (d) Orfor	n metallic copper com lery/ pasty coating can b Copper sulphide - Copp Copper carbonate - Cop Copper carbonate - Cop	oe seen ov oer carbor oper sulph oper hydro oer sulphi	nate nate oxide de		30	stat (a) (c)	e Silver nitrate Silver chloride	(b) (d)	[MP PMT 1999 Silver sulphate Sodium sulphate	; JIPMER 2002

r www.studentbro.in

305.	When silver nitrate is heate	d to red hot, what is formed [CPMT 1996;	NCERT 1970]	(a) Photoelectrolysis(c) Galvanization	(b) Electroplating(d) Cathodic protection	
	(a) <i>Ag</i>	(b) Ag_2O	317.	From aqueous solution of	$ZnSO_4$, normal zinc carbonate ma	ay be
	(c) Ag_2O_3	(d) AgO_2		precipitated by	[CPMT	
306.		NO_3 , which of the following	s used[AFMC 1998]	(a) Boiling with $CaCO_3$	(b) Adding Na_2CO_3	
•	(a) <i>PH</i> ₃	(b) AsH_3		(c) Adding $NaHCO_3$	(d) Passing CO_2	
		(d) NH_3	318.	Which one of the following	g dissolve in hot concentrated Nat	ОН
207	(c) Na_2CO_3	(d) <i>IVII</i> 3 reacts with concentrated sulp	-	solution		1980]
307.	(a) Au	(b) Ag		(a) Fe	(b) <i>Zn</i>	
	(c) Pt	(d) <i>Pb</i>		(c) <i>Cu</i>	(d) <i>Ag</i>	
308.	(-)	left globule on heating strong	y 319.	Which of the following meta	al forms an amphoteric oxide	
			IPMER 2001]	$()$ C_{α}	(1) E a	1976]
	(a) $Pb(NO_3)_2$	(b) $NaNO_3$		(a) <i>Ca</i> (c) <i>Cu</i>	(b) <i>Fe</i> (d) <i>Zn</i>	
	(c) $AgNO_3$	(d) $Cu(NO_3)_2$	320.	()	(d) Zn and very dilute nitric acid yields	
309.	During extraction of silver,	which of the following is forn	-		[MP PET 1985, 92, 97; BHU 1995, 2	2000;
		[^	P PET 2002]		NCERT 1974; MP PMT 1	1995]
	(a) $Na[Ag(CN)_2]$	(b) $Na_2[Ag(CN)_2]$			(b) $Zn(NO_3)_2 + NO$	
	(c) $Na_4[Ag(CN)_2]$	(d) None of these		(c) $Zn(NO_3)_2 + NH_4N$	NO_3 (d) $Zn(NO_3)_2 + NO_2$	
310.	Colourless solutions of the	following four salts are place	separately 321.	The number of unpaired ele	ectrons in Zn^{2+} is	
	in four different test tubes one of these. Which solutio	and a strip of copper is dip	oed in each	(a) 2	(b) 3	
	one of these. which solutio		P PET 2002]	$ \begin{array}{ccc} (c) & 4 \\ T & c & c & c \\ \end{array} $	(d) 0	
	(a) KNO_3	(b) $AgNO_3$	322.	The trace metal present in i (a) Iron	insulin is [KCET (b) Cobalt	1991]
	(c) $Zn(NO_3)_2$	(d) $ZnSO_{A}$		(c) Zinc	(d) Manganese	
011	Zinc when reacted with exc		323.	The chemical name of boray	x is [CPMT 1	1994]
311.	Zine when reacted with exe	CPMT 1974, 78, 94; N	P PMT 1999]	(a) Sodium orthoborate		
	(a) Zinc hydroxide	(b) Zinc oxide		(b) Sodium metaborate(c) Sodium tetraborate		
	(c) Di sodium zincate	(d) Sodium zincate		(d) Sodium tetraborate de	cahydrate	
312.	Pair of metals which dissolv	res in NaOH solution	324.	Hydrogen is not obtained w	hen zinc reacts with	
	(a) <i>Al</i> , <i>Cu</i>	(b) Zn, Hg			[CPMT 1	1994]
	(c) <i>Zn</i> , <i>Cu</i>	(d) Zn, Al		(a) Cold water	(b) Dilute H_2SO_4	
313.	<i>Lucas reagent</i> is		205	(c) Dilute <i>HCl</i> The metal which gives had	(d) Hot 20% <i>NaOH</i> lrogen on treatment with acid as we	all ac
		[CPMT 1980; AIIMS 1980, 82		sodium hydroxide is	[MP PET 1	
		MP PET 1995; MP P	MT 1997, 98]	(a) Iron	(b) Zinc	
	(a) Anhydrous $ZnCl_2$ +			(c) Copper	(d) None of the above	
	(b) Hydrous $ZnCl_2 + di$	l.HCl	326.	it, is	rosion, the most durable metal plating [CBSE PMT 1]	•
	(c) Conc. HNO_3 + anhy	drous ZnCl ₂		(a) Nickel plating	(b) Tin plating	-
	(d) Conc. HNO_3 + anhy	vdrous MgCl ₂		(c) Copper plating	(d) Zinc plating	
314.	What is the effect of shak	ing dil. H_2SO_4 with small	quantity of 327.	The compound $ZnFe_2O_4$ is		2002]
	anhydrous CuSO 4			(a) A normal spinel compo	ound	
		[NCERT 1975; CF	MT 1975, 88]	(b) Interstitial compound(c) Covalent compound		
	(a) The white solid dissolv	ves to form a colourless soluti	'n	(d) Co-ordination compou	Ind	
	. ,	res to form a green solution	328.		BaO at $1100^{\circ}C$ gives a compo	-
	· · /	blue but does not dissolve		Identify the compound $()$ P_{1} Z_{2}	(AFMC 2	2002]
315.	(d) The white solid dissolv Which metal is electro-den	ves to form a blue solution osited on iron surface to prev	ent rusting [MP PFT 1000	(a) $BaZnO_2$	(b) $BaO_2 + Zn$	
J.J.	(a) Cu	(b) Zn	int total livit i bi 1990	$H(c) BaCdO_2$	(d) $Ba + ZnO_2$	
	(a) Cu (c) Mg	$\begin{array}{c} (b) En \\ (d) Pb \end{array}$	329.		with H_2SO_4 and HCl but not	with
316.	() 0	pipes carrying drinking water	are covered	HNO_3 because	[CBSE PMT 2	2002]
0.01	with zinc. The process invo			(a) NO_2 is reduced in pro-	eference to H_3O^+	
		[CPMT 1986; MP PMT 1993; /	IP PET 1999]			

r www.studentbro.in

- (b) HNO_3 is weaker acid than H_2SO_4 and HCl
- (c) Zn acts as oxidising agent when reacts with HNO_3
- (d) In electrochemical series Zn is placed above the hydrogen
- **330.** The metal used for making radiation shield is

331.

(a) Copper

The metal used for making radiat	ion sincla is
	[Kerala (Med.) 2002]
(a) Aluminium	(b) Iron
(c) Zinc	(d) Lead
Which of the following metal is	obtained by leaching out process

using a solution of addition of zinc dust		and then	precipitating	the metal	by
	ſ	NCERT 1084	. AIIMS 1083. (BSE PMT 10	801

(b) Silver

- (c) Nickel
 (d) Iron
 332. While extracting an element from its ore, the ore is ground and leached with dilute *KCN* solution to form the soluble product potassium argentocyanide. The element is
 - (a) Lead (b) Chromium
 - (c) Manganese (d) Silver
- **333.** In Mc Arthur Forest method, silver is extracted from the solution of $Na[Ag(CN)_2]$ by the use of: [CPMT 2004]

(b)	Fe	(b)	Mg
(c)	Cu	(b)	Zn

334. Iron obtained from blast furnace is known as

[DPMT 1981; CPMT 1988; MP PET 2000]

- (a) Wrought iron (b) Cast iron
- (c) Pig iron (d) Steel
- **335.** Extraction of silver from commercial lead is possible by

				[BHU 1979]
(a)	Mond's process	(b)	Park's process	

- (c) Haber's process (d) Clark's process
- **336.** Impurities of lead in silver are removed by[AllMS 1987](a) Park process(b) Solvey process
 - (c) Cyanide process (d) Amalgamation process
- **337.** Park's process is used in the extraction of

[BHU 1977; CBSE PMT 1992; MP PMT 1996;

Kurukshetra CEE 1998] (b) Zinc

- (c) Silver (d) Lead
- **338.** From argentite (Ag_2S) ore the method used in obtaining metallic silver is [MP PMT 1989]
 - (a) Fused mixture of Ag_2S and KCl is electrolysed
 - (b) Ag_2S is reduced with CO

(a) Iron

- (c) Ag_2S is roasted to Ag_2O which is reduced with carbon
- (d) Treating argentite with $NaC\!N$ solution followed by metal displacement with zinc
- **339.** In the extraction of zinc which gas is burnt in the jackets surrounding the retorts
 - (a) Water gas (b) Producer gas
 - (c) Oil gas (d) Coal gas
- 340. MacArther process is used for
 - (a) *Hg* (b) *Fe*
 - (c) Cl (d) O_2

- (a) Absorbance of ultraviolet light and re-emission of white light is employed
- $(b) \;\;$ Shock cooling by contact with a shower of molten lead is done
- (c) X-ray method is used
- (d) Smelting is employed
- **342.** In the metallurgy of copper, metallic copper is finally formed in the furnace by the reactions
 - (a) $Cu_2S + O_2 \rightarrow 2Cu + SO_2$
 - (b) $2CuS + 3O_2 \rightarrow 2CuO + 2SO_2$

 $2CuO + CuS \rightarrow 3Cu + SO_{2}$

(c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$

 $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$

- (d) $CuS + O_2 \rightarrow Cu + SO_2$
- **343.** In the smelting of roasted copper pyrites ore, melting occurs so that the first reaction is
 - (a) All the sulphur preferentially combines with iron to form FeS and CuO is formed
 - (b) All the sulphur preferentially combines with copper to form $CuS\,$ and $FeO\,$ is formed
 - (c) All the sulphur preferentially combines with iron to form FeS and Cu_2O is formed
 - (d) All the sulphur preferentially combines with copper to form Cu_2S and FeO is formed
- 344. In the oxidation of Cu, the reaction which takes place in bessemer converter is [CPMT 1999]
 - (a) $2CuFeS_2 + O_2 \rightarrow Cu_2S + FeS + SO_2$
 - (b) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$
 - (c) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
 - (d) $2FeS + 3O_2 \rightarrow 2FeO + 2SO_2$
- 345. Silica is added to roasted copper ore during smelting in order to remove [KCET 1998]
- (a) Cuprous sulphide(b) Cuprous oxide(c) Ferrous oxide(d) Ferrous sulphide
- 346. Parke's process is used to extract [MP PMT 2002]
 - (a) Silver using NaCN
 - (b) Copper using $CuFeS_2$
 - (c) Silver from argentiferrous lead
 - (d) Silver by forming amalgam
- **347.** Identify the reaction that doesn't take place during the smelting process of copper extraction
 [KCET 2003]
 - (a) $2FeS + 3O_2 \rightarrow 2FeO + 2SO_2 \uparrow$
 - (b) $Cu_2O + FeS \rightarrow Cu_2S + FeO$
 - (c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2 \uparrow$
 - (d) $FeO + SiO_2 \rightarrow FeSiO_3$
- **348.** The extraction of which of the following metals involves bessemerisation [DCE 2004]
 - (a) *Fe* (b) *Ag* (c) *AI* (d) *Cu*
- **349.**Bessemer converter is used for
(a) Steel[AFMC 2004](b) Wrought iron
 - (c) Pig iron (d) Cast iron
- 350. In the cyanide process for the extraction of silver, sodium cyanide is used to [MP PMT 1994]
 (a) Convert silver into a soluble silver complex
- **341.** In the metallurgy of zinc, the zinc dust obtained from roasting and (a) Convert silver i reduction of zinc sulphide contains some ZnO. How is this removed [MP PET 1993; AFMC 2012] silver

[BHU 1995]

CLICK HERE

🕀 www.studentbro.in

Get More Learning Materials Here :

	(c) Precipitate silver(d) Oxidise silver				(b) Treating the solid	
1	Parke's process of desilveriza				(c) Dissolving the solid	d in dil. $H_2 SO_4$
	 (a) Partition coefficient of having a high value 	silver bet	ween molten zinc/molten lead		(d) Dissolving the solid	d in dil. <i>HCl</i>
1	(b) Partition coefficient of having a low value	silver bet	ween molten zinc/molten lead			
,			while the silver–lead eutectic is left behind in liquid form		G	tical Thinking
,	(d) Chemical combination easily	of zinc an	d silver which precipitates out			Objective Questions
1	Which is impure form of irc			1.	Transition metal with lo	w oxidation number will act as
	(a) Cast iron		Wrought iron			[DCE 200
	(c) Steel iron	(d)	None		(a) A base	
1	Blister copper is		[CPMT 1976, 85, 2002;		(b) An acid	
	() _		82; MP PET 1995; Bihar CEE 1995]		(c) An oxidising agent(d) None of these	
	(a) Pure copper		Ore of copper	2.	()	g pair will have effective magnetic momen
	(c) Alloy of copper	. ,	1% impure copper		equal	s pair this have encetted the prese the
1	blister copper is obtained du	ue to evolu	00		(a) Cr^{+3} and Mn^{+2}	
	(a) Water vapour	()	Sulphur dioxide	~	(c) V^{+2} and Sc^{+3}	(d) Ti^{+2} and V^{+2}
	(c) Carbon dioxide	~ /	Carbon monoxide	3.	Which is least soluble in	
		••	er some gold is found in the[CPM	T 1972; A	•	(b) AgBr
	(a) Cathode	()	Cathode mud		(c) AgI	(d) Ag_2S
	(c) Anode mud	(d)	Electrolyte		(e) AgF	
I	Purest form of iron is	-	75, 80, 84, 87, 89; DPMT 1982, 83;	4.	Which one of the follow electrons	wing has the maximum number of unpaire [UPSEAT 200
	M	IP PMT 198	7, 90, 91; MP PET 1995; BHU 1999; MH CET 2003]		(a) Mg^{2+}	(b) Ti^{3+}
	(a) Cast iron	(b)	Wrought iron	-	(c) V^{3+} Which of the following i	(d) Fe^{2+}
	(c) Hot steel	(d)	Stainless steel	5.		ions form most stable complex compound[M
	<i>Spelter</i> is		[CPMT 1988]		(a) Cu^{++}	(b) Ni^{++}
	(a) Impure <i>Cu</i>	(b)	Impure Zn		(c) Fe^{++}	(d) Mn^{++}
	(c) ZnO	(d)	CuO	6.	$Mn^{\scriptscriptstyle ++}$ can be converted	d into ${\it Mn}^{7+}$ by reacting with
			with a gold film and is placed			[UPSEAT 2003
i	in dilute HNO_3 . This will	result in fo	ormation of		(a) SO_2	(b) <i>Cl</i> ₂
			[CPMT 1981]		(c) PbO_2	(d) $SnCl_2$
	(a) Gold nitrate	(b)	Copper nitrate	7.	General configuration	of outermost and penultimate shell i
	(c) None of these	(d)	Purple of cassins		$(n-1)s^2(n-1)p^6(n-1)$	$d^{x}ns^{2}$. If $n = 4$ and $x = 5$ then no. of proto
1	When zinc is added to CuS	SO_4 copp	er gets ppt. due to		in the nucleus will be	[MP PET 2003
			[CPMT 1979]		(a) > 25	(b) < 24
	(a) Reduction of copper io	ns	• -	-	(c) 25	(d) 30
	(b) Oxidation of copper ion			8.	Which transition metal	reduces steam to evolve hydrogen
	(c) Hydrolysis of copper su				(a) <i>Mg</i>	[MP PMT 2003; DCE 2002 (b) Fe
	(d) Complex formation	-			(c) Sc	(d) Pt
		CuSO ₄ s	olution caused precipitation of	9.		e following element is coloured
	Cu owing to the	<i>cus c</i> 4	[CPMT 1990]			[MP PMT 1990
	-				(a) <i>Ag</i>	(b) <i>Hg</i>
1	(a) Reduction of Cu^{++}				(c) <i>Zn</i>	(d) <i>Co</i>
	(b) Oxidation of Cu^{++}			10.	Arrange Ce^{+3}, La^{+3}, F	Pm^{+3} and Yb^{+3} in increasing order of the
	(c) Reduction of <i>Fe</i>				ionic radii	[AIEEE 2002
	(d) Reduction of Fe^{+++}				(a) $Yb^{+3} < Pm^{+3} <$	$Ce^{+3} < La^{+3}$
	. ,	I Guarda a a 1:	J VMnO L.		(b) $Ce^{+3} < Yb^{+3} < Ib^{+3}$	
	Oxygen gas can be prepared	i from som				
		1. 1	[DPMT 2001]		(c) $Yb^{+3} < Pm^{+3} <$	
1	(a) Strongly heating the so	olid			(d) $Pm^{+3} < La^{+3} <$	$Ce^{+5} < Yb^{+3}$

r www.studentbro.in

	$MnO_4 + 5Te + 6T \rightarrow Mn + 5Te + 4T_2O$ Here	
	$10ml$ of $0.1M$ $K\!MnO_4$ is equivalent to	
	[CPMT 1999]	
	(a) $20ml$ of $0.1M$ FeSO ₄	23.
	(b) $30ml$ of $0.1M$ FeSO ₄	
	(c) $40ml$ of $0.1M$ FeSO ₄	
	(d) $50ml$ of $0.1M$ FeSO ₄	
12.	Which of the following is/are soluble in ethanol	
	[Roorkee Qualifying 1998]	24.
	(a) HgF_2 (b) $HgCl_2$	
	(c) $HgBr_2$ (d) HgI_2	
13.	Out of all the known elements, the percentage of transitional elements is approximately	25.
	(a) 30% (b) 50%	
	(c) 60% (d) 75%	
14.	Atomic number of <i>Cr</i> and <i>Fe</i> are 24 and 26 respectively. Which of the following is paramagnetic with the spin of electron[CBSE PMT 2002]	26
	(a) $[Cr(NH_3)_6]^{+3}$ (b) $[Fe(CO)_5]$	26.
	(c) $[Fe(CN)_6]^{-4}$ (d) $[Cr(CO)_6]$	
15	(c) $[Pe(CV)_6]$ (d) $[CV(CV)_6]$ Which of the following is not an element [DCE 2001]	
15.	(a) Graphite (b) Diamond	
	(c) 22-carat gold (d) Rhombic sulphur	
16.	Which of the following is more paramagnetic [DCE 2001]	
	(a) Fe^{+2} (b) Fe^{+3}	
	(c) Cr^{+3} (d) Mn^{+3}	
17.	The number of <i>d</i> -electrons in Fe^{2+} (at no. of $Fe = 26$) is not	
	equal to that of the [MNR 1994] (a) p - electrons in Ne (at. no. = 10)	Read
	(b) s - electrons in Mg (at. no. = 12)	the op
	(c) d - electrons in Fe	(a)
	(d) p - electrons in Cl^- (at. no. of $Cl = 17$)	<i>(b)</i>
18.	The basic character of the transition metal monoxides follows the	(c)
	order [CBSE PMT 2003]	(d) (e)
	(a) $TiO > VO > CrO > FeO$ (b) $VO > CrO > TiO > FeO$	(•)
	(c) $CrO > VO > FeO > TiO$	1.
	(d) $TiO > FeO > VO > CrO$	
	(Atomic no. $Ti = 22$, $V = 23$, $Cr = 24$, $Fe = 26$)	
19.	Amongest following the lowest degree of paramagnetism per mole of the compound at 298 K will be shown by	
	(a) $MnSO_4.4H_2O$ (b) $CuSO_4.5H_2O$	
	(c) $FeSO_4.6H_2O$ (d) $FeSO_4.5H_2O$	2.
20.	In nitroprusside ion, the iron and NO exist as Fe^{II} and NO^+ rather than Fe^{III} and NO . These forms can be differentiated by[IIT-JE	T (D-0)
	(a) Estimating the concentration of iron	⊏ 19498]
	(b) Measuring the concentration of CN^-	
	(c) Measuring the solid state magnetic moment	
	(d) Thermally decomposing the compound	4.
21.	Among the following, the compound that is both paramagnetic and coloured is [IIT-JEE 1997]	
	$() K C_{T} O \qquad (1) (NU) (T:C)$	

 $K\!MnO_4$ reacts with ferrous sulphate according to the equation

 $MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$

11.

completely with one mole of ferrous oxalate $Fe(C_2O_4)$ in acidic solution is [IIT-JEE 1997; KCET 1996] (a) 3/5 (b) 2/5 (c) 4/5 (d) 1 In following reaction $yMnO_4^- + xH^+ + C_2O_4^- \rightarrow yMn^{++} + 2CO_2 + \frac{x}{2}H_2O$, x and y are [CPMT 1997] (a) 2 and 16 (b) 16 and 2 (c) 8 and 16 (d) 5 and 2 Which of the following weighs less when weighed in magnetic field (a) VCl_3 (b) $ScCl_3$ (c) $TiCl_3$ (d) $FeCl_3$ An elements is in M^{3+} form. Its electronic configuration is $[Ar]3d^1$ the ion is [JIPMER 2002] (a) Ti^{3+} (b) *Ti*⁴⁺ (c) Ca^{2+} (d) Sc^+ The atomic number of vanadium (V), chromium (Cr), manganese (Mn) and iron (Fe) are respectively 23, 24, 25 and 26 which one of these may be expected to have the highest second ionization enthalpy [AIEEE 2003] (b) *Cr* (a) V

The number of moles of $KMnO_4$ that will be needed to react

22.

Here

(d) *Fe*

For AIIMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.

(c) *Mn*

- (*d*) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

1.	Assertion	:	Cuprous ion (Cu^+) has unpaired electrons
			while cupric ion (Cu^{++}) does not
	Reason	:	Cuprous ion (Cu^+) is colourless where as
			cupric ion (Cu^{++}) is blue in the aqueoussolution[AIIMS 2002]
2.	Assertion	:	Zn^{2+} is diamagnetic
	Reason	:	The electrons are lost from 4 <i>s</i> orbital to form
			Zn ²⁺ [11T-JEE 1998]
-jee 8 98]	Assertion	:	Transition metals show variable valence.
	Reason	:	Due to a large energy difference between the
			ns^2 and $(n-1)d$ electrons.
			[A11MS 1996]
4.	Assertion	:	The aqueous solution of $FeCl_3$ is basic in nature.
	Reason	:	$FeCl_3$ hydrolyses in water. [AIIMS 1998]
5.	Assertion	:	$AgCl$ dissolves in NH_4OH solution.
	Reason	:	Due to formation of a complex.

Get More Learning Materials Here :

(b) $(NH_4)_2(TiCl_6)$ (d) $K_3[Cu(CN_4)]$

(a) $K_2 C r_2 O_7$

(c) $VOSO_4$

			[AIIMS 1998]
6.	Assertion	:	Pure iron is not used for making tools and machines.
	Reason	:	Pure iron is hard. [AIIMS 1998]
7.	Assertion	:	Solution of Na_2CrO_4 in water is intensely coloured.
	Reason		Oxidation state of Cr in Na_2CrO_4 is +VI.
	Reason	:	
8.	Assertion	:	[AIIMS 2003] Copper metal gets readily corroded in an acidic
0.	Assertion	·	aqueous solution.
	Reason	:	Free energy change for this process is positive.[AIIMS 2004]
9.	Assertion	:	The free gaseous <i>Cr</i> atom has six unpaired electrons.
	Reason	:	Half filled s' orbital has greater stability.
	neubon	•	[AllMS 2004]
10.	Assertion	:	Fe^{2+} is paramagnetic.
	Reason	:	Fe^{2+} contains four unpaired electrons.
11.	Assertion	:	Transition metals are good catalysts.
	Reason	:	V_2O_5 or Pt is used in the preparation of
			H_2SO_4 by contact process.
12.	Assertion	:	Rusting of an iron is an example of corrosion.
	Reason	:	Rusting of iron is decreased by acids and electrolytes.
13.	Assertion	:	AgBr is used in photography.
	Reason	:	AgBr undergoes photochemical reaction.
14.	Assertion	:	Tungsten filament is used in electric bulbs.
	Reason	:	Tungsten is a metal of high melting point.
15.	Assertion	:	$Na_2Cr_2O_7$ is not a primary standard in
			volumetric analysis.
	Reason	:	$Na_2Cr_2O_7$ is hygroscopic.
16.	Assertion	:	Promethium is a man made element.
	Reason	:	It is radioactive and has been prepared by artificial means.
17.	Assertion	:	Magnetic moment values of actinides are lesser than the theoretically predicted values.
	Reason	:	Actinide elements are strongly paramagnetic.
18.	Assertion	:	The degree of complex formation in actinides decreases in the order
			$M^{4+} > MO_2^{2+} > M^{3+} > MO_2^+.$
	Reason	:	Actinides form complexes with π -bonding ligands such as alkyl phosphines and thioethers.

[AIIMS 1998]

19.	Assertion	:	In transition elements ns orbital is filled up first and $(n-1)d$ afterwards, during ionization ns electrons are lost prior to $(n-1)d$ electrons.
	Reason	:	The effective nuclear charge felt buy $(n-1)d$ electrons is higher as compared to that by <i>ns</i> electrons.
20.	Assertion	:	Extraction of iron metal from iron oxide ore is carried out by heating with coke.
	Reason	:	The reaction $Fe_2O_3(s) \rightarrow Fe(s) + \frac{3}{2}O_2(g)$ is
			a spontaneous process. [AIIMS 2005]

Answers

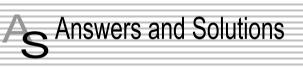
General Characteristics 2 1 с d 3 b 4 с 5 d 7 8 10 6 а с 9 с а C 11 с 12 13 d 14 15 b С С 16 17 18 19 20 С b C b а 21 d 22 23 24 25 с а с С 27 28 26 С b 29 30 а С С 31 32 33 35 b С а 34 С b 36 а 37 d 38 d 39 b 40 С 41 d 42 d d 45 43 44 d C d 47 b 48 46 С 49 а 50 с 51 С 52 b 53 d 54 d 55 а 56 а 57 а 58 b 59 b 60 b 61 62 63 64 65 d b а а С 66 d 67 b 68 b 69 b 70 а 71 С 72 d 73 74 d 75 d а 76 С 77 b 78 b 79 d 80 с 83 81 b 82 84 85 d а b b 86 d 87 88 89 b 90 b С с d 91 92 а 93 С 94 C 95 а 96 97 98 99 100 d С с С d 102 105 101 b d 103 d 104 С а 106 d 107 109 110 с 108 d d d 111 b 112 113 d 114 115 а b а 116 b 117 с 118 d 119 С 120 b 121 а 122 С 123 d 124 d 125 а 126 d 127 d 128 129 d 130 d а 131 а 132 С 133 а 134 С 135 b 136 С 137 b 138 С 139 а 140 b 142 145 141 b а 143 b 144 b d

146 b 147 d 148 c 149 d 150 a 151 c 152 d 153 a 154 b 155 c 156 d 157 b 158 c 159 a 160 a 161 c 162 b 163 b 164 c 165 a 166 d 167 c 168 d 169 d 170 d 171 c 172 a 173 b 174 a 175 a 176 c 177 b 178 c 179 d 180 a 181 b 182 c 183 a 184 d 185 b 186 a 187 c 193 c 194 c 195 d 191 c 192 c 193 c 199 a 200 a 201 a										
156 d 157 b 158 c 159 a 160 a 161 c 162 b 163 b 164 c 165 a 166 d 167 c 168 d 169 d 170 d 171 c 172 a 173 b 174 a 175 a 176 c 177 b 178 c 179 d 180 a 181 b 182 c 183 a 184 d 185 b 186 a 187 c 193 c 194 c 195 d 191 c 192 c 193 c 194 c 195 d 196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 215 c 2101 a <td>146</td> <td>b</td> <td>147</td> <td>d</td> <td>148</td> <td>C</td> <td>149</td> <td>d</td> <td>150</td> <td>a</td>	146	b	147	d	148	C	149	d	150	a
161 c 162 b 163 b 164 c 165 a 166 d 167 c 168 d 169 d 170 d 171 c 172 a 173 b 174 a 175 a 176 c 177 b 178 c 179 d 180 a 181 b 182 c 183 a 184 d 185 b 186 a 187 c 193 c 194 c 195 d 191 c 192 c 193 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 216 c 207 a 208 d 219 b 210 a 221 b 213 b 214 b 215 c 216 a 217 c	151	C	152	d	153	а	154	b	155	C
166 d 167 c 168 d 169 d 170 d 171 c 172 a 173 b 174 a 175 a 176 c 177 b 178 c 179 d 180 a 181 b 182 c 183 a 184 d 185 b 186 a 187 c 193 a 194 c 195 d 191 c 192 c 193 c 194 c 195 d 196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 220 b 221 b	156	d	157	b	158	C	159	а	160	a
171 c 172 a 173 b 174 a 175 a 176 c 177 b 178 c 179 d 180 a 181 b 182 c 183 a 184 d 185 b 186 a 187 c 188 b 189 a 190 d 191 c 192 c 193 c 194 c 195 d 196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 226 b	161	C	162	b	163	b	164	C	165	a
176 c 177 b 178 c 179 d 180 a 181 b 182 c 183 a 184 d 185 b 186 a 187 c 188 b 189 a 190 d 191 c 192 c 193 c 194 c 195 d 196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 223 b 224 a 225 b 226 b 227 d	166	d	167	C	168	d	169	d	170	d
181 b 182 c 183 a 184 d 185 b 186 a 187 c 188 b 189 a 190 d 191 c 192 c 193 c 194 c 195 d 196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a	171	c	172	a	173	b	174	a	175	a
186 a 187 c 188 b 189 a 190 d 191 c 192 c 193 c 194 c 195 d 196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 223 b 224 a 225 b 221 b 227 d 228 a 229 a 230 d 226 b 227 d 238 d 234 a 235 c 231 a 232 a	176	c	177	b	178	c	179	d	180	a
191 c 192 c 193 c 194 c 195 d 196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 222 b 223 b 224 a 225 b 221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	181	b	182	C	183	a	184	d	185	b
196 c 197 d 198 c 199 a 200 a 201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	186	a	187	c	188	b	189	a	190	d
201 a 202 d 203 c 204 b 205 d 206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	191	С	192	C	193	C	194	С	195	d
206 c 207 a 208 d 209 b 210 a 211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	196	C	197	d	198	C	199	a	200	a
211 a 212 b 213 b 214 b 215 c 216 a 217 c 218 d 219 b 220 b 221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	201	a	202	d	203	c	204	b	205	d
216 a 217 c 218 d 219 b 220 b 221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	206	C	207	a	208	d	209	b	210	a
221 b 222 b 223 b 224 a 225 b 226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	211	a	212	b	213	b	214	b	215	c
226 b 227 d 228 a 229 a 230 d 231 a 232 a 233 d 234 a 235 c	216	a	217	C	218	d	219	b	220	b
231 a 232 a 233 d 234 a 235 c	221	b	222	b	223	b	224	a	225	b
	226	b	227	d	228	a	229	a	230	d
236 a 237 a 238 d 239 h 240 h	231	а	232	а	233	d	234	а	235	C
	236	a	237	a	238	d	239	b	240	b
241 b	241	b								

Compounds of Transitional elements

	-				-		-		
1	а	2	C	3	d	4	a	5	b
6	C	7	a	8	b	9	b	10	d
11	a	12	a	13	a	14	a	15	a
16	a	17	a	18	d	19	b	20	b
21	d	22	C	23	е	24	b	25	c
26	d	27	d	28	а	29	c	30	c
31	а	32	d	33	b	34	d	35	a
36	а	37	b	38	b	39	b	40	a
41	а	42	c	43	c	44	а	45	a
46	b	47	C	48	b	49	a	50	c
51	b	52	b	53	c	54	d	55	c
56	а	57	C	58	d	59	b	60	d
61	d	62	b	63	C	64	а	65	c
66	b	67	C	68	а	69	а	70	c
71	а	72	a	73	а	74	а	75	a
76	d	77	d	78	d	79	а	80	c
81	b	82	d	83	C	84	d	85	b
86	а	87	C	88	C	89	b	90	a
91	b	92	C	93	d	94	C	95	е
96	b	97	b	98	d	99	C	100	c
101	b	102	а	103	а	104	d	105	C

106	a	107	C	108	d	109	b	110	b
111	a	112	а	113	b	114	a	115	а
116	c	117	а	118	а	119	c	120	с
121	C	122	а	123	а	124	b	125	С
126	а	127	С	128	а	129	С	130	а
131	a	132	а	133	d	134	С	135	a
136	d	137	b	138	а	139	b	140	c
141	C	142	а	143	b	144	d	145	е
146	е	147	a	148	c	149	b	150	b
151	d	152	а	153	b	154	а	155	с
156	a	157	С	158	а	159	b	160	b
161	b	162	c	163	d	164	b	165	d
166	c	167	a	168	b	169	с	170	d
171	a	172	с	173	d	174	с	175	c
176	d	177	а	178	b	179	с	180	b
181	a	182	b	183	b	184	b	185	а
186	c	187	c	188	d	189	с	190	C
191	a	192	d	193	c	194	a	195	d
196	а	197	с	198	d	199	b	200	с
201	d	202	b	203	а	204	a	205	а
206	a	207	b	208	а	209	c	210	a
211	a	212	c	213	а	214	с	215	c
216	c	217	а	218	а	219	а	220	c
221	d	222	b	223	с	224	b	225	a
226	d	227	a	228	с	229	d	230	d
231	c	232	а	233	b	234	b	235	c
236	а	237	с	238	d	239	а	240	d
241	d	242	b	243	ab	244	а	245	bc
246	d	247	b	248	а	249	d	250	а
251	b	252	a	253	d	254	a	255	a
256	d	257	b	258	d	259	b	260	d
261	b	262	a	263	с	264	b	265	d
266	a	267	b	268	с	269	b	270	b
271	c	272	с	273	с	274	b	275	b
276	b	277	b	278	b	279	b	280	d
281	a	282	с	283	а	284	a	285	a
286	b	287	d	288	с	289	d	290	а
291	C	292	d	293	а	294	b	295	a
296	b	297	d	298	с	299	d	300	d
301	b	302	а	303	а	304	а	305	а
306	a	307	b	308	C	309	a	310	b
311	d	312	d	313	а	314	d	315	b
316	c	317	C	318	b	319	d	320	C
321	d	322	C	323	d	324	a	325	b


326	d	327	a	328	a	329	b	330	d
331	b	332	d	333	d	334	C	335	b
336	a	337	C	338	d	339	b	340	a
341	d	342	C	343	a	344	C	345	C
346	C	347	C	348	d	349	C	350	a
351	a	352	a	353	d	354	b	355	C
356	b	357	b	358	C	359	a	360	a
361	a								

Critical Thinking Questions

1	c	2	b	3	d	4	d	5	а
6	C	7	b	8	b	9	d	10	а
11	d	12	abc	13	C	14	а	15	C
16	b	17	d	18	a	19	b	20	c
21	C	22	а	23	b	24	b	25	а
26	b								

Assertion & Reason

1	е	2	b	3	C	4	е	5	а
6	С	7	а	8	d	9	C	10	а
11	b	12	C	13	b	14	а	15	а
16	а	17	b	18	b	19	а	20	d

General characteristics

 $4s^1$

1

(c) $3d^{5}$ Cr 1 1 1 1 1 1 $Cr^{+} 1 1 1 1 1 1$

(d) There are 6 electrons in its ultimate and penultimate shell.

3. (b) They show variable oxidation state due to participation of *ns* and (n-1)d electrons.

4. (c)
$$(Cr^{+6}K_2Cr_2O_7 - \text{yellow } Cr^{+3}Cr_2(SO_4)_3 - \text{green})$$

7. (a) Ionic radii $\propto \frac{1}{\text{Atomic No.}}$ lonic radius decreases from left to right in a period.

8. (c) The atomic weight;

Equivalentweight = $\frac{\text{Atomic weight}}{\text{No. of } e^{-1} \text{lostor gained}}$

$$Fe^{2+} \rightarrow Fe^{3+} + e^{3+}$$

Get More Learning Materials Here :

CLICK HERE

1.

2.

.: Equivalent weight = Atomic weight

10. (c) Gold; $([Xe]5d^{10}6s^1)$.

11. (c) (n-1)d and *ns* orbits.

12. (c) *d*-block elements; because

- (i) Small atomic size
- (ii) High nuclear charge
- (iii) Presence of vacant d-orbitals
- 13. (d) Transitional elements form coloured salts due to the presence of unpaired electrons in *d*-orbital.
- 14. (c) *Cu*; because last electron enters *d*-orbital $(3d^{10}4s^1)$.
- **15.** (b) Cu due to the presence of vacant *d*-orbital.
- 17. (b) Nickel; $Ni + 4CO \rightarrow [Ni(CO)_4]$ (volatile)
- (c) Copper, silver and gold; all the three were used for making coins.
- 19. (b) 2, 8, 18, 1 = *Cu*
- **23.** (a) In between *s* and *p*-block elements.
- **25.** (c) Fe^{+3}

Colour	Magnetic
of ion	moment
Green	2.76
Violet	1.9
Yellow	5.96
Blue	1.9
	of ion Green Violet Yellow

26. (a) Misch metal is an alloy of rare earth metals with composition : Rare earth metals - 94.95% Iron (*Fe*) - 5%

Iron (*Fe*) – 5% *S*, *C*, *Ca*, *Al*..... – Traces

- 27. (c) "All their ions are colourless" this sentence is false because they are 90% coloured and only few are colourless.
- **28.** (b) $1s^2, 2s^2p^6, \dots, ns^2p^6d^3, (n+1)s^2$ as last electron enters *d*-subshell.
- **30.** (c) Due to unpaired *d*-electrons.

31. (b) $Fe^{+2} - 3d^6 4s^0 - 4$ unpaired e^- .

- **32.** (c) All the oxides of $Fe(FeO, Fe_2O_3 \text{ and } Fe_3O_4)$ are basic in nature.
- $\textbf{34.} \qquad (c) \quad \text{The presence of one or more unpaired electrons in the system}.$
- **35.** (b) They show multiple oxidation state due to availability of vacant *d*-orbitals.
 - They are coloured due to *d*-*d* transition.
- **36.** (a) $Mn^{2+} 5$ unpaired electrons.
- **38.** (d) Iron belongs to group VIII B of the periodic table.
- **39.** (b) *d*-orbital is complete; $Zn 3d^{10} 4s^2$
- (d) Transition elements form co-ordinate compounds because of
 (i) High nuclear charge
 (ii) Small size
 (iii) Vacant *d*-orbital
- **42.** (d) Hg is a good conductor of electricity.
- 45. (c) Transition metals show variable valency.
- **46.** (d) Cu^+ do not have any unpaired electron.

47. (b)
$$Fe^{2+}$$
 ion have 4 unpaired electrons

$$Fe^{2+} = 26 - 2 = 24 = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$$

- **48.** (c) Hydrogenation because they have tendency to occlude hydrogen on free surface.
- 49. (a) Metals contribute their valency electrons to the common sea of electrons.
- **52.** (b) They are inert towards many common reagents.

53. (d) Oxidation state of iron in mohr's salt
$$FeSO_4(NH_4)_2SO_4.6H_2O$$
 is + 2.

- **54.** (d) They show variable oxidation states due to participation of (n-1) *d*-orbitals electrons with *ns* orbital electrons.
- 55. (a) Electronic configuration of chromium

 $Cr \rightarrow [Ar] 3d^5 4s^1$

$$Cr^{2+} \rightarrow [Ar]3d^4 4s^0$$
.

- **56.** (a) Covalent bond is constituted by electrons of *d*-orbitals and lusture is due to free electrons of *s*-orbital in metallic bond.
- **57.** (a) *Cr* has highest M.P. and B.P. due to maximum no. of unpaired electrons.
- **58.** (b) *Hg* as there is no unpaired electron so M.P. and B.P are low. *Hg* is therefore liquid at room temperature with 234*K*.
- **60.** (b) *Zn* due to increased shielding effect the attraction of electrons towards nucleus decreases.
 - (a) Number of electrons in excited state

 $X^{+3} = 18 + 4 = 22$ Number of electrons in ground state

$$X = 22 + 3 = 25$$

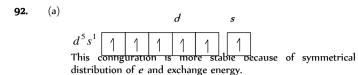
61.

- **62.** (d) $(n-1)s^2p^6d^{1-10}ns^1$ or ns^2
- **64.** (a) Ni^{2+} and Cr^{2+} are coloured. But Zn^{2+} is colourless because of absence of unpaired e^- .
- **66.** (d) They show variable valency due to presence of vacant *d*-orbitals.
- **67.** (b) Maximum oxidation state = 6

Maximum no. of e^- in last shell = 6

- \therefore Group is VI-B.
- **76.** (c) Ag belongs to second (4d) transition series remaining all are in first transition series.
- **77.** (b) Fe^{+2} ion have 4 unpaired electron so it is paramagnetic.
- **78.** (b) $_{30}Zn$ and $_{80}Hg$ have their *d* orbitals completely filled so they do not show any variable valency.
- **80.** (c) *d*-block elements are known as transition elements. These show variable valency due to their incomplete *d*-subshell.
- **81.** (b) Electronic configuration of $_{27}Co$ -

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 4s^2$$
,


hence unpaired $e^- = 3$

- **82.** (a) $_{30} Zn$ has been placed in 11 B group of *d*-block in the long form of periodic table.
- **83.** (b) The electronic configuration of Zn is $(Ar)3d^{10}4s^2$. Hence due to complete *d*-subshell, it does not show variable valency.
- **84.** (b) $Zn^{+2} 3d^{10}$ no unpaired electrons. Hence, diamagnetic in nature.
- **85.** (d) Terbium is lanthanide as it belongs to 4f-series having configuration $[Xe]4s^96s^2$. However the remaining members belong to 5f-series (actinides).

🕀 www.studentbro.in

87. (c) Fe^{+2} and Ni^{+2} both.

- **89.** (b) $Ti^{+4} \rightarrow 3d^0 4s^0$ \therefore no unpaired e^- .
- **91.** (d) Transition metal as its last electron enters *d*-orbital.

- Among the transition metals *Mn* forms maximum no. of oxides. 93 (c) $MnO Mn_3O_4 Mn_2O_3$ MnO_2 $Mn_{\circ}O_{-}$ amphoteric amphoteric amphoteric acidic
- Due to d^5 configuration, metallic bonds are weak. d^5 orbital 94 (c) is half filled as a result 3d electrons are more tightly held by the nucleus and this reduces the de-localization of electrons resulting in weaker metallic bonding.

(a) Cu^{+2} 95.

S.No	lon	Electronic configuration	No. of unpaired electrons
(i)	Cu^{+2}	d^9	1
(ii)	Ni ⁺²	d^8	2
(iii)	<i>Co</i> ⁺²	d^7	3
(iv)	Fe^{+2}	d^{6}	4

 $\mu = \sqrt{n(n+2)}$ (magnetic moment)

$$\mu \propto \sqrt{n}$$

 Cu^{+2} there is only 1 unpaired electron so its magnetic moment is least.

- (c) In the first transition series $Mn(3d^54s^2)$ shows the 96. maximum oxidation state of + 7.
- They crystallize with body centered cubic and hexagonal close 97. (c) packed structure.
- Carrying unpaired electrons. 99. (d)
- All are transition elements and form complex ion. 102 (d)
- Ni and Co are used as catalyst. (d) 103.
- (c) Magnetic moment depend upon the no. of unpaired electrons. 104.
- *Cr* has 6 unpaired electrons. 105. (a)
- (d) Europium is a f – block elements as it follows the general 106. electronic configuration of the f – block elements $(4f^{1-14}5d^{0,1}6s^2)$
 - $Eu = [Xe] 4 f^7 6s^2$
- 107. (c) 70% Cu and 30% Zn are mixed to form brass which is used in making utensils, artificial jewelry.
- Strength of metallic bond depends upon number of unpaired 108. (d) electrons. As number of unpaired electrons increases, the bond strength increases. So Cr, Mo, W show stronger bonding due to maximum number of unpaired electron.
- Zn^{+2} as there are no unpaired electrons. (d) 109.

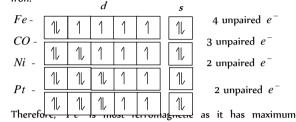
Zn	1	1	1	1	1	1
Zn ⁺² Cobalt i	1,	1	1,	1	1	
Cobalt i	s used	ti m c	ancer	ther	apy.	

111. Cu is oxidised which turns the solution blue.

 $Zn^{+2} - 3d^{10}4s^0$ so there are no unpaired electrons. (d) 113.

 $Sc - 21 \rightarrow 3d^1 4s^2$ (b) 114.

110.


(d)

- $3d^5$ as this configuration corresponds to maximum number 116. (b) of unpaired electrons.
- Hg because it lies below H_2 in electrochemical series and thus 121. (a) cannot reduce it.
- High charge/size ratio and vacant d-orbitals. 122. (c)
- 123. They have one or more unpaired d - electron. (d)
- Fe because it easily gets oxidised in moist air. 125. (a)

$$Fe \xrightarrow[H_2O/H^+]{\text{air}} Fe_2O_3.xH_2O_3.xH_2O_3$$

126. Pt, because it is a noble metal and does not react with air, (d) water or acid at room temperature.

128. (a) Iron:

number of unpaired electrons.

The transition metals form a large number of interstitial 129 (d) compounds in which small atoms like hydrogen, carbon, boron and nitrogen occupy interstitial sites in their lattices.

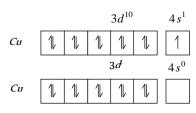
130. (d) Because
$$Pt$$
 is a noble metal.

131. (a)
$$Zn - 3d^{10} 4s^2$$

 $Zn^{++} - 3d^{10} 4s^2$
132. (c) $Ti \rightarrow 3d^2 4s^2$

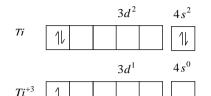
$$Ti^{+4} \rightarrow 3d^0 4s^0$$

- Atomic no. 58 to 71 are rare earth metals. 133 (a) Lanthanides
- (c). 58 to 71 and 90 to 103 (Lanthanides & actinides). 134.
- 136. (c) To form complex compounds.
- Cu as it comes after H in electrochemical series. 137. (b)
- Their *d*-orbitals are completely filled. 139. (a)
- Cu as it comes after H in electrochemical series. It has positive 140. (b) standard reduction potential thus does not provide electrons for reduction.


44. (b)
$$6Hg + O_3 \rightarrow 3Hg_2O$$

Mercurous oxide

1


154.

During this reaction, mercury loses its miniscus and starts sticking glass.

- Ga, In, Tl; they belong to p-block. 145. (d)
- 148. (c) Zn, Cd and Hg are non typical transition elements because they have complete *d*-orbitals.
- In Cr^{3+} number of unpaired $e^- = 3$. A electronic (a) 150. configuration of $Cr^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$.
- Zinc does not have any unpaired electron pair so it forms only 151. (c) colourless compound.
- VII B groups as the metal must contain 7 electrons in ultimate 153. (a) shell in order to show + 7 oxidation state. (b)

155. (c) Ti^{+3} is paramagnetic due to the presence of an unpaired electron.

156. (d) At 350π and 1 atm pressure 1 unit volume of *Pd* absorbs 900 unit volume of H_2 .

157. (b)
$$Cu^{2+} \to 3d^9 4s^0$$

1 unpaired e^- .

- **159.** (a) Mercury does not give H_2 on reacting with water because its ionisation energy is so much high.
- 160. (a) Removal of electron is easier in f-block elements due to more shielding.
- **161.** (c) Transition metal show variable valency due to presence of vacant *d*-orbitals.

163. (b)
$$Fe^{2+} - 1s^2 2s^2 p^6 3s^2 p^6 d^6$$
.

- **164.** (c) It has 6 electrons in 3d orbital.
- **165.** (a) They form oxide readily.
- **166.** (d) Cr^{+3} due to presence of unpaired electrons.
- **169.** (d) Fe^{++} due to presence of 4 unpaired electrons.
- **170.** (d) *Fe* because it belongs to transition series.
- **171.** (c) Lanthanide contraction takes place.
- **172.** (a) Variable oxidation states give free valencies.
- **173.** (b) Mn = +2, +3, +4, +5, +6, +7
- **175.** (a) *Zn* due to no unpaired electron in *d*-orbital.
- **176.** (c) $1s^2, 2s^2p^6, 3s^2p^6d^2, 4s^2$.
- **179.** (d) $\mu = \sqrt{n(n+2)}$ (μ = magnetic moment)

(*n* = no. of unpaired electron).
2.83 =
$$\sqrt{n(n+2)}$$

$$n(n+2) = 8$$

$$n^2 + 2n - 8 = 0$$

$$n=2$$
.

180. (a) $Cr^{+++} \rightarrow \text{green}$

 $Fe^{+++} \rightarrow Pale-green$

181. (b) Inner transition elements means *F*-block element, they have three incomplete outer orbitals.

184.
 (d)

$$3d$$

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

185. (b) d - d transition of 3d electrons.

186. (a)
$$K_{4}[Fe(CN)_{6}]$$

 $4 + x - 6 = 0$
 $x = 6 - 4$

$$x = +2$$
.

188. (b) $Mn^{2+} - 3d^5 \rightarrow \text{unpaired } e^-$.

- **189.** (a) Very high ionisation energy and weak metallic bond.
- 191. (c) Iron because mercury does not form amalgam with iron.
- **192.** (c) Chromium gives protective and decorative coating to the base metal.
- **193.** (c) *d*-block elements as last electron enters in *d*-orbital.
- **195.** (d) Highest oxidation state \rightarrow no. of $s e^- + \text{no. of } d e^-$
- **196.** (c) Ionic and covalent compounds.
- **198.** (c) $[Kr]4d^{10}5s^1$ (atomic no. = 47)
- **199.** (a) Magnese is stronger oxidising agent in + 7 oxidising state. *e.g.* $KMnO_4$
- **200.** (a) $Cu^+ 3d^{10} 4s^0$; no unpaired e^- .
- **201.** (a) Fe CO Ni. With the increase in the *d*-electrons, screening effect increases, this counter balances the increased nuclear charge due to increase in atomic number. As a result atomic radii remain practically same after chromium.
- **202.** (d) Ta because it is non-corrosive.
- **205.** (d) Cobalt due to presence of unpaired e^- .

206. (c)
$$Ti^{3+} \rightarrow 3d^1 4s^0$$
; $Sc^{3+} \rightarrow 3d^0$

(d)

208.

209

$$Mn^{2+} \rightarrow 3d^5 4s^0$$
; $Zn^{2+} \rightarrow 3d^{10} 4s^0$

In Mn^{2+} number of unpaired $d e^- = 5$. So it has maximum magnetic moment according to the formula. $\mu = \sqrt{n(n+2)}$

207. (a) + 4 oxidation state of cerium is also known in solution.

 $(n-1) d^5 n s^2$ can achieve the maximum oxidation state of + 7.

(b)
$$Ti_{22} = 3d^2 4s^2$$
; $Ti^{2+} = 3d^2$
 $V_{23} = 3d^3 4s^2$; $V^{2+} = 3d^2$
 $Cr_{24} = 3d^4 4s^2$; $Cr^{4+} = 3d^2$

$$Mn_{25} = 3d^5 4s^2$$
; $Mn^{5+} = 3d^2$

- (a) As sixth period can accommodate only 18 element in the table, 14 member of *HF* series (atomic number 58 ot 71) are separately accommodated in a horizontal row below the periodic table. These are called as lanthanides.
- (b) The oxidation state in both (lanthanide and actinide) is +3. The property of actinide are very similar to those of lanthanide when both are in +3 state.
- **213.** (b) The lanthanide contraction relates to atomic as well as M^{3+} radii in which the regular decrease in the size of lanthanoid ion from La^{3+} to Lu^{3+} are found.
- **214.** (b) Highest magnetic moment depends upon number of unpaired electron since

$$Cr^{2+} = 3d^4 4s^0$$
, $Mn^{2+} = 3d^5 4s^0$
 $Cu^{2+} = 3d^9 4s^0$, $Co^{2+} = 3d^7 4s^0$, $Ni^{2+} = 3d^6 4s^0$

So Mn^{2+} contain maximum number of unpaired electron *i.e.* 5.

- **215.** (c) Cobalt 27 belong to 3d transition series having in complete 3d orbitals *i.e.*, $3d^7$.
- **216.** (a) It is the Tata iron and steel company.
- **217.** (c) The atomic weight of Co, Ni and Fe are 58.90, 58.60, 55.85 respectively. Therefore Co > Ni > Fe is the correct sequence of atomic weight.
- **218.** (d) The first ionization energies of Ti, V, Cr and Mn are 656, 650, 652 and 717 *kJ/mole* respectively. I.E. increase in a period from $L \rightarrow R$ hence, manganese has maximum first ionisation potential.
- **219.** (b) Metal *M* belongs to *d*-block. Its electronic configuration can be arranged as, $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$.
- **220.** (b) We know that transition element are those element which have partially filled *d*-subshell in their elementary form. Therefore, the general electronic configuration of *d*-block element is $(n-1) d^{1-10} n s^{1-2}$.
- 221. (b) The element with atomic no. 105 is dubnium. In IUPAC nomenclature, it is known as un-nil pentin.
- **222.** (b) The compound which have the unpaired electron show the paramagnetic property.
- **223.** (b) Among the given choice Mn^{2+} and Fe^{3+} involve isoelectronic ions.
- **224.** (a) Elements or ions containing unpaired electrons are paramagnetic.

 $Ni^{2+} = [Ar] 3d^{8} 4s_{2} ; Ni^{2+} = [Ar] 3d^{8} 4s^{0}$ $Ni^{2+} \text{ stage} \qquad 3d \qquad 4s$ 1 + 1 + 1 + 1

Because Ni^{2+} have 2 unpaired electrons in 3d subshell therefore it is paramagnetic.

225. (b) Cr(Z = 24) has electronic configuration

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$ (: half filled *d* orbital is more stable than incompletely filled *d* orbital)

- **226.** (b) The expected electronic configuration of Cu (29) is $[Ar] 3d^9 4s^2$ but actually it is found to be $[Ar] 3d^{10} 4s^1$. This is because fully filled d orbitals are more stable than incompletely filled d-orbitals. So there is a migration of one e^- , from 4s orbital to 3d orbital to give a more stable configuration.
- 227. (d) Ce 58 have configuration $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^2 4p^6 4d^{10} 4f^2, 5s^2 5p^6 5d^0, 6s^2$ Since, its last electron enter in \mathcal{F} sub-shell, therefore it is a

228. (a)
$$Ni \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$$

 $Ni^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$
 $3d^8 = 10 - 2 = 2$ unpaired electron.

member of *F*-block.

230. (d)
$$_{25}Mn = 3d^54s^2$$

After losing two electron electronic configuration will be like this $(_{25}Mn^{++}3d)$ and this is most stable configuration due to half filled orbitals hence third ionization enthalpy will be highest in this case.

231. (a)
$${}_{21}Sc \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$$

$$Sc^{+3} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6$$

Due to presence of paired electron it will be colourless.

- **232.** (a) Lanthanum is the first element of Lanthanide series so size decreases with increase in atomic number so La has the largest atomic radii.
- **234.** (a) *Tl* ions are more stable than *Tl* and thus, *Tl* ions change to *Tl* ions thereby acting as oxidising agents.

TI compounds + 2 $e \rightarrow TI$ compounds

(less stable oxidising agent) (more stable oxidising agent)

237. (a) $Fe \rightarrow [Ar] 3d 4s$, number of unpaired electrons = 5

Fe \rightarrow [Ar] 3d 4s, number of unpaired electrons = 4

 $C\sigma \rightarrow [Ar] \ 3d \ 4s$, number of unpaired electrons = 3

- $C\sigma \rightarrow [Ar] \ 3d \ 4s$, number of unpaired electrons = 4
- **238.** (d) Paramagnetic character is actually due to presence of unpaired electrons.
- 239. (b) Mercury has the property of dissolving nearly all metals, forming liquid or solid solutions called amalgams. It amalgamates well with gold, silver and tin, but does not dissolve iron or platinum. Presence of these may result in sickening or flouring of the mercury.
- **240.** (b) *Ce* -lanthanide, *Cs* -alkali metal, *Cf* -actinide, *Ca* -alkaline earth metal.
- **241.** (b) Where n = number of unpaired electron

For
$$Sc^{3+} = 3d^0, n = 0$$
, $\therefore \mu = 0$

Compounds of Transitional elements

1. (a)
$$MnO_2$$
, MnO_2 , Mn^{2+}
In neutral medium :
 $2KMnO_4 + 3MnSO_4 + 2H_2O \rightarrow$

$$K_2SO_4 + 2H_2SO_4 + 5MnO_2$$

 $2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH + 3O$ In acidic medium :

$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4$$

$$+5H_2O+5O$$

- **2.** (c) Oxidation state of *Mn* changes from +7 to +2 in acidic medium *i.e.* one mole of it accepts 5 mole of electrons.
 - (d) Since it accept $6e^-$ its Equivalent weight = $\frac{M}{6}$.

(b) Decreases from + 6 to + 3. $K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3O_4$ $[H_2S + [O] \rightarrow S + H_2O] \times 3$ $K_2Cr_2O_7 + 4H_2SO_4 \rightarrow 2H_2SO_4$

$$K_2Cr_2O_7 + 4H_2SO_4 + 3H_2S \rightarrow$$

$$K_2 SO_4 + Cr(SO_4)_3 + 7H_2O + 3S$$

+3

(c)
$$FeSO_4$$
 is oxidised and $KMnO_4$ is reduced.
 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4$
 $[2FeSO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 2H] \times 5$

CLICK HERE

3.

5.

6.

🕀 www.studentbro.in

 $\frac{[2H+[O] \rightarrow H_2O] \times 5}{2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \rightarrow}$ $K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O$

In this reaction oxidation state of Mn is changing from +7 to +2 while oxidation state of Fe is changing from +2 to +3.

- 7. (a) $Hg_2Cl_2 + 2NH_4OH \rightarrow NH_4Cl + 2H_2O + Hg + HgNH_2Cl_{Calomal}$
- **8.** (b) Ag^+ forms a complex ion with NH_3

$$AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl$$

9. (b) Four water molecules.

 $CuSO_4.5H_2O$ is a crystalline salt. Four H_2O molecules attach to copper forming a square planar symmetry and two oxygen atoms from SO_4^{2-} ion complete the distorted octahedron. The fifth water molecule is attached through hydrogen bonding between one of the co-ordinated water molecule and one of the sulphate ion.

10. (d) AgCl is a covalent compound hence it is insoluble in water also it form complex with NH_4OH , thus is soluble in NH_4OH .

$$AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + H_2O$$

11. (a) Basic copper acetate.

- **13.** (a) H_2O_2 reduces acidified $KMnO_4$ solution. As a result. The pink colour of $KMnO_4$ is changed.
- 14. (a) MnO_2 forms amphoteric oxide due to intermediate oxidation state.
- **15.** (a) MnO is ionic due to lower oxidation state.
- 17. (a) Manufacture of blue black ink.
- 18. (d) As fertilizer because it is not required by plants.
- 20. (b) Since Ag is less reactive than Cu therefore it does not displace Cu from CuSO₄ while other metals are more reactive, they displace Cu from CuSO₄.

21. (d) Its reduction to metallic silver.

$$2AgNO_3 \rightarrow 2Ag + N_2 + 3O_2$$

22. (c) $Na_2S_2O_3 + CuSO_4 \rightarrow NaCuS_2O_3$

23. (e)
$$2HgO \xrightarrow{\Delta} 2Hg + O_2$$

- **24.** (b) $2Fe + 3Cl_2 \rightarrow 2FeCl_3$
- **25.** (c) *Fe*(*OH*)*SO*₄

 $FeSO_4 \xrightarrow{H_2O} Fe(OH)SO_4$

27. (d) $\frac{1}{5}$ × molecular weightof *KMnO*₄

as transfer of $5e^-$ takes place when $K\!MnO_4\,$ acts as oxidant in acidic medium.

 $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5O$

28. (a) Oxidation number of Cr in options *a*, *b*, *c* and *d* are +6, +4, + 3, + 3 respectively.

In given options (a) has high oxidation number therefore its radii will be low. Atomic radii decreases with increase in oxidation no.

- **33.** (b) Cuprous chloride. $Cu(s) + 2HCl + CuSO_4 \rightarrow 2CuCl + H_2SO_4$ Cuprous chloride
- **34.** (d) Cuprous chloride slowly oxidises to green basic cupric chloride. $CuCl \xrightarrow{\text{air}} 3CuO.CuCl_2.3H_2O$

green coloured

35. (a) $2CuCl + 2HCl + [O] \rightarrow 2CuCl_2 + H_2O$

38. (b) Equivalent weight of $KMnO_4$ in acidic medium is M/5

: Equivalent weight =
$$\frac{158}{5}$$
 = 31.6

- **39.** (b) In acidic medium, $KMnO_4$ gives 5 oxygen while acidic $K_2Cr_2O_7$ gives 3 oxygen.
- **41.** (a) Ag_2O is mild oxidising agent as greater the oxidation number of metal stronger oxidising agent.

42. (c)
$$K_2Cr_2O_7 + 3H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3(O) + 3H_2$$

No. of electrons lossed = 12 - 6 = 6
 $M_2 = 294 = 40$

$$\therefore$$
 Equivalent weight = $\frac{14}{6} = \frac{29}{6} = 49$.

4. (a)
$$ZnSO_4 \rightarrow Zn^{++} + SO_4^{-2}$$

 $Zn^{++} \approx Cu^{++}$
 $Cu^{+2} \rightarrow 3d^9 - 1$ unpaired

4

47

4

5

: paramagnetic in nature.

46. (b) $KMnO_4$ is first reduced to manganate and then to insoluble manganese dioxide. Colour changes first from purple to green and finally becomes colourless.

$$2KMnO_7 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$$

$$2K_2MnO_4 + 2H_2O \rightarrow 2MnO_2 + 4KOH + 2O$$

$$2KMnO_2 + H_2O \xrightarrow{\text{alkaline}} 2MnO_2 + 2KOH + 3[O]$$

o

$$2KMnO_2 + H_2O \longrightarrow 2MnO_2 + 2KOH + 3$$

(c)
$$2KMnO_4 + 3H_2SO_4 + 5C_2H_2O_4 \rightarrow$$

$$2Mn^{2+} + 8H_2O + 10CO_2$$

8. (b)
$$2KI + HgI_2 \rightarrow \underbrace{K_2 Hgl_4}_{\text{Nescler's reagent}} + KOH$$

0. (c)
$$Cr_2O_7^{2-} + 8H^+ + 2SO_3^{2-} \rightarrow 2Cr^{+3} + 3SO_4^{2-} + 4H_2O$$

- **51.** (b) $KI + MnO_4^- \rightarrow K^+ IO_3^- + Mn^{+2}$
- **52.** (b) Among all the reactions given $CuSO_4$ does not react with KCl to give Cu_2Cl_2 .
- 53. (c) Mohr's salt. $2KMnO_4 + 8H_2SO_4 + 10FeSO_4 \rightarrow$ $K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O$

Mohr's salt decolourises $KMnO_4$ by reducing Mn^{+7} ions to Mn^{+2} ions.

- **55.** (c) Amalgams are alloys which contain mercury as one of the contents.
- 56. (a) In order to make the image permanent, it is necessary to remove the unreduced silver bromide from the surface of the developed film. This operation is called fixing of image. Fixing is

done by dipping the developed film or plate in sodium thiosulphate (hypo) solution, the hypo solution dissolves the unreduced silver bromide by forming a complex.

$$\begin{array}{c} AgBr+2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr\\ \text{Sodium argentothiosulphate}\\ \text{(soluble)} \end{array}$$

Thus sodium thiosulphate acts as a complexing agent. All of these.

- $Fe^{+3} 3d^5 5$ electrons unpaired. (b) 59. Fe will be attracted in magnetic field so will show increase in weight.
- TiF_6^{2-} and Cu_2Cl_2 due to absence of unpaired electrons. (d) 60.
- Copper oxide; $2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$ 62. (b)
- Cuprous iodide is precipitated with liberation of iodine. 63. (c) $2KI + CuSO_4 \rightarrow CuI_2 + K_2SO_4 + I_2$
- It is one third of its molecular weight in alkaline medium 64. (a) because it gives 3 nascent oxygen in alkaline medium.

$$2KMnO_4 + H_2O \xrightarrow{+3e} 2KOH + 2MnO_2 + 3[O]$$

$$\therefore \text{ Equivalent weight} = \frac{M}{2}$$

Ch

$$\frac{1}{3}$$

$$65. \quad (c) \quad NaCl + H_2SO_4 + K_2Cr_2O_7 \rightarrow C_2O_2Cl \rightarrow K_2CO_2$$

$$rO_2Cl_2 + K_2SO_4 + Na_2SO_4$$

romyl chloride

66. (b) Decomposes in sunlight.

58.

(d)

$$2AgNO_3 \xrightarrow{\Delta} 2Ag + 2NO_2 + O_2$$

67. (c) Silver;
$$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$$

White ppt.

(c) The formation and thermal decomposition of $Ni(CO)_4$. 70.

71. (a)
$$CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]^{++}SO_4^{--}$$

72. (a) Equivalent wt. =
$$\frac{\text{molecular wt.}}{\text{total no. of } e^- \text{ gained or lost}} = \frac{M}{1} = M$$

76. (d)
$$HgI_2 + 2KI \rightarrow K_2[HgI_4] \rightleftharpoons 2K^+ + [HgI_4]^{--}$$

- 80. The conversion of dichromate to chromate. (c) $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4 + H_2O_4$
- $MnO_2 + KOH \rightarrow K_2MnO_4$ 81. (b) pyrollusite

83. (c)
$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow K_2SO_4 + 2CrO_5 + 5H_2O_3$$

84. (d) Iron;
$$Fe + H_2 O/H^+ \rightarrow Fe_2 O_3 . xH_2 O$$

 Na_2CdCl_4 - no unpaired electrons. 85. (b)

CuCN; 87. (c)

 $3d^{10}$

as all the electrons are paired. It is expected to be colourless.

 $4s^{0}$

- $ZnSO_4$, $MgSO_4$ are isomorphous i.e. having same structure. 88. (c)
- TiO_2 because of 3d state *i.e.* no unpaired electrons. 90. (a)
- $CoO \rightarrow Co^{+2}$ is blue colour. 91. (b)

92. (c)
$$Ca_2P_2O_7 \rightarrow 2Ca^{++} + (P_2O_7)^{4-}Fe^{+3} + (P_2O_7)^{4-} \rightarrow Fe_4(P_2O_7)_3$$

93. Agl because of high covalent character along with strong (d) Vander Waal's attraction and electrostatic attraction between silver and iodide ions.

100. (c)
$$ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$$

Sodium zincate

- 101 (b) $HgCl_2$ compound is easily volatile. They are insoluble in water and soluble in acids.
- 102. Colourless compounds are those which have no unpaired (a) electrons and paramagnetic substance do have unpaired electrons. Therefore paramagnetic substance possess colour.

$$107. \quad (c) \quad MnSO_4 \to Mn^{2+} + SO_4^{2-}$$

111.

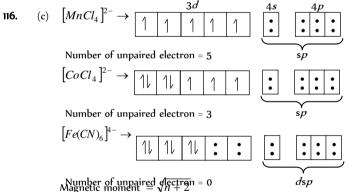
117.

CLICK HERE

(a)

due to presence of unpaired electrons it will form coloured salt. Cast iron : iron -93-95%

4s°

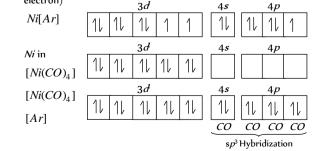

- Carbon 2.5 -5%, impurities about 2%.
- $FeCl_3$ is a salt of strong acid and weak base. It gives 112. (a) $Fe(OH)_3$ and HCl on hydrolysis. $Fe(OH)_3$ is a weak base and HCl is strong acid.

So the aqueous solution of $FeCl_3$ will be acidic in nature

113. (b)
$$Cr_2^{6+} + 6e^- \to 2Cr^{3+}; Fe^{2+} \to Fe^{3+} + e^-$$

 CrO_3 and Mn_2O_7 are acidic oxide since they react with 114. (a) water to form acid.

$$CrO_3 + H_2O \rightarrow H_2CrO_4$$
; $Mn_2O_7 + H_2O \rightarrow 2HMnO_4$
Chromic
acid
Permagnic
acid


Where, n = number of unpaired electron *i.e.*, greater the number of unpaired electron greater will be the paramagnetic character.

In the compound $[Ni(CO)_4]$ (a)

Oxidation number of Ni = 0

Co-ordination number of Ni = 4

(Co (carbonyl) is a strong ligand so it cause pairing of electron)

🕀 www.studentbro.in

Get More Learning Materials Here :

118. (a) Applying the oxidation number rule in $[Fe(H_2O)_5(NO)]SO_4$

 $(\because \ H_2 O \ \text{and} \ \textit{NO} \ \text{are neutral})$

 $[x + (0) \times 5 + 0] + (-2) = 0$

$$x + 0 + 0 - 2 = 0 \implies x = +2$$

Hence, oxidation number of *Fe* is +2. $Zn + NaOH \rightarrow Na_2ZnO_2 + H_2$

10. (c)
$$Fe_2O_3 + 6NaOH \rightarrow 2Fe(OH)_3 \downarrow + 3Na_2O$$

Brown
(insoluble in NaOH)

- (c) Mercurous chloride are insoluble in water while rest are soluble in water.
- **122.** (a) *ZnO* is an amphoteric oxide,

119.

12

(c)

$$ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$$
$$ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$$

123. (a) Fe^{3+} ion has $[Ar] 3d^5$ configuration hence number of unpaired electron is 5.

124. (b)
$$FeS + H_2SO_4 \rightarrow FeSO_4 + H_2S$$

- 125. (c) In this complex CO^{2+} ion have 3 unpaired electron so spin only magnetic moment will be $\sqrt{3(3+2)}$ *i.e.*, $\sqrt{15}$ *B.M.*
- 126. (a) Platinum acts as catalyst in the oxidation of ammonia to form nitric oxide. This reaction is used in the Ostwald's method of nitric acid preparation

$$4NH_{3} + 5O_{2} \xrightarrow{P_{t}} 4NO + 6H_{2}O$$
$$2NO + O_{2} \rightarrow 2NO_{2}$$
$$4NO_{2} + O_{2} + 2H_{2}O \rightarrow 4HNO_{3}$$

(c) Iron is oxidised to ferrous nitrate and nitric acid is changed to ammonium nitrate

$$4Fe+10HNO_3 \rightarrow 4Fe(NO_3)_2 + NH_4NO_3 + 3H_2O$$

128. (a)
$$CrO_3 + 2NaOH \rightarrow Na_2CrO_4 + H_2O$$

Yellowsolution

129. (c)
$$2KI + CuSO_4 \rightarrow CuI_2 + K_2SO_4$$

Unstable $2CuI_2 \rightarrow Cu_2I_2 + I_2$

Hence, solution contains Cu_2I_2 , I_2 and K_2SO_4 .

130. (a) Cu is placed above Ag in electrochemical series, hence it can replace Ag from its salts solution. Therefore the reaction occurs as follows,

$$Cu + AgNO_3 \xrightarrow{Oxidation} Cu NO_3 + Ag$$

- 131. (a) When the quenched steel is heated to temperature below red hot and then allowed to cool slowly, it becomes soft. This process is known as annealing.
- 132. (a) We know that ammonia the order of solubility is AgCl > AgBr > AgI. Therefore, AgCl is more soluble in ammonia.
- 133. (d) In alkaline medium, $KMnO_4$ first reduced in manganate & then in insolusle manganese dioxide.

$$2MnO_4^- + H_2O \rightarrow 2MnO_2 + 2OH^- + 3[O]$$

In acidic medium, Manganous sulphate formed

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
.

134. (c)
$$(NH_4)_2 Cr_2 O_7 \xrightarrow{\Lambda} 2K_2 Cr O_4 + Cr_2 O_3 + \frac{3}{2}O_2$$

135. (a) ${\it HgS}$ is soluble in aqua-regia and it is insoluble in hot dil. ${\it HNO}_3$.

136. (d)
$$Ag_2O \xrightarrow{\Delta} 2Ag + \frac{1}{2}O_2$$

- **138.** (a) $HgCl_2$ show dimerisation. It found in dimer form.
- **139.** (b) Iron pyrites (FeS_2) is also called 'fools gold'.
- 140. (c) According to Fajan, small anion is polarised to lesser extent than the larger anion. Hence AgF will be the most ionic and has high melting point.
- 141. (c) Potassium dichromate, on heating gives oxygen and chromic oxide (Cr_2O_3) .

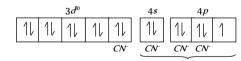
$$4K_2Cr_2O_7 \xrightarrow{\Lambda} 4K_2Cr_2O_4 + 3O_2 + 2Cr_2O_3$$

142. (a) Nickel is purified by Mond's process

Nickel+
$$CO \xrightarrow{60-80^{\circ}C} Ni(CO)_4 \xrightarrow{180^{\circ}C} Ni + 4CO$$

Impure Gaseous comp.

143. (b) Stainless steel contains 11.5% Cr and 2.0% Ni with Fe.


144. (d) German silver is an alloy of copper not silver containing
$$Cu = 56.0\%$$
, $Zn = 24.0\%$ and $Ni = 20.0\%$.

- 145. (e) This scheme take place in Van Arekel process by this process ultrapure metal is prepared, the impure metal is first converted into a volatile stable compound generally iodide(leaving behind the impurities which is then decomposed at a higher temperature to give the pure metal. Metal like titanium, zirconium are purified by this method.
- 146. (e) *HgS* on strong heating gives *Hgs*
- **147.** (a) $Cr_2O_3.2H_2O$ is known as cruignet green.
- 148. (c) Vanadium (III) oxide is a strong reducing agent vecause vanadium is electropositive metal and have high reduction potential. It has low heat of sublimation, low ionisation potential.
- 149. (b) Stainless steel does not rust because chromium forms an oxide layer and protect iron from rusting.

150. (b)
$$HgCl_2 + Na_2CO_3 \rightarrow HgCO_3 + 2NaCl$$

$$HgCO_3 \xrightarrow{\Delta} HgO + CO_2$$

151. (d) *Ni* in presence of $CN^ [Ni^{2+}$ in presence of $CN^- = [Ar]$

 $\mathrm{ds}p^2$ Hybridization

As $[Ni(CN)_4]^{2-}$ has no unpaired electron. It is diamagnetic.

- **152.** (a) The solubility of silver bromide in hyposolution due to the formation of $[Ag(S_2O_3)_2]^{3-}$.
- **153.** (b) Brass is an alloy of *Zn* and *Cu*.
- **154.** (a) lodine being a strong reducing agent reduce Cu^{2+} ions to Cu^{+} ions and itself gets oxidised to iodine.

$$2 \overset{+2}{CuSO}_{\text{Reduced}} + \overset{-1}{4 \overset{-1}{KI}} \rightarrow \overset{+1}{Cu_2^2} \overset{0}{I_2} + \overset{0}{I_2} + 2K_2 SO_4$$

155. (c) Rust is Fe_2O_3 and $Fe(OH)_3$

156. (a) $_{21}Sc = [Ar] 3d^1 4s^2$

 $Sc^{3+} = [Ar] 3d^0 4s^0$ no unpaired electrons in *d* sub shell, so it is diamagnetic and colourless.

- **157.** (c) Zinc sulphate $(ZnSO_4.7H_2O)$ is called white vitriol. It, when heated with barium sulphide, forms a white pigment lithopone.
- **158.** (a) Isomorphic compound are those compounds which forms same type of crystals *i.e.*, have similar structure. $FeSO_4.7H_2O$ is isomorphous with $ZnSO_4.7H_2O$.
- **159.** (b) Colour of transition metal ion salt is due to d-d transition of unpaired electrons of *d*-orbital. Metal ion salt having similar number of similar number of unpaired electron in *d*-orbitals shows similar colour in aqueous medium

Number of unpaired electrons = 1 **160.** (b) *Zn* dissolve in Conc. *NaOH* due to the formation of Sodium Zincate

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

CuS --- Black

ZnS — White

- CoS --- Black
- 162. (c) KMNO₄ will not be oxidized further by ozone as maganese is already present in its highest possible oxidation state i.e. +7
 163. (d) In alkaline medium

$$2KMnO_4 + KI + H_2O \rightarrow 2MnO_2 + 2KOH + KIO_3$$

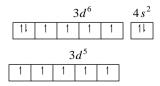
164. (b)
$$2KI + 2CuSO_4 \rightarrow I_2 + Cu_2I_2 + 2K_2SO_4$$

 $\stackrel{O}{I_2 + 2Na_2} \stackrel{+2}{S_2} O_3 \rightarrow \stackrel{+2.5}{Na_2} \stackrel{S_4}{S_4} O_6 + 2NaI$

166. (c) Bronze contain Cu = 75 - 90%, Sn = 10 - 25%

~

168. (b) Brass (Cu + Zn)


German silver (Cu + Zn + Ni)

- **169.** (c) $4Au + 8KCN + 2H_2O + O_2 \rightarrow 4K[Au(CN)_2] + 4KOH$ (Solube complex)
- **170.** (d) Platforming is a process for manufacturing platinum.
- 171. (a) We know by reducing auric chloride by stannous chloride, the colloidal solution of gold is obtained. It is known as purple of cassium.

172.	(c) List 1	List 2	
	(i) Explosive	$Pb(N_3)_2$	
	(ii) Artficial gem	Al_2O_3	
	(iii) Self reduction	Cu	
	(iv) Magnetic material	Fe_3O_4	

178. (b)
$$Fe + Cr + Ni =$$
 Stainless steel

- **179.** (c) *CaO* and *MgO* are refractory materials. They have very high melting point.
- **180.** (b) Brass contain Cu = 60% and Zn = 40% in its composition.
- (a) Annealing is a process of heating steel to redness followed by slow cooling

182. (b)
$$_{26} Fe^{2+}$$

$$Fe^{3+}$$

+ 3 state is most stable because of half filled d sub-shell

183. (b)
$$Fe_{95-97\%}$$
 and $Ni_{3-5\%}$

- 185. (a) The process of producing a hard coating of iron nitride on steel is called nitriding.
- 187. (c) Iron loses magnetic property at curie point.
- 188. (d) Heat treatment alters the properties of steel due to change in the lattice structure due to differential rate of cooling.
- **189.** (c) The passivity of iron is due to the formation of a thin insoluble and invisible iron film on surface which prevents its further reactions. The film is due to the formation of Fe_3O_4 .

190. (c)
$$2Fe + SO_2 \rightarrow FeO + FeS$$

- 191. (a) The steel obtained by this process retains its hardness but is not brittle.
- **192.** (d) In blast furnace at 400-600 C for the smelting of iron, following takes place:-

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

- **194.** (a) $Cu + Zn + Ni_{20\%} + Ni_{20\%}$
- **195.** (d) Iron is rendered passive by conc. HNO_3 and other oxidising agents like $K_2Cr_2O_7$, $KMnO_4$, Chloric acid, chromic acid, silver nitrate etc. A specimen of passive iron can be rendered active by scratching the film mechanically or chemically.
- **199.** (b) *Fe* present in Haemoglobin

201. (d)
$$2FeSO_4 \rightarrow Fe_2O_3 + SO_2 + SO_3$$

203. (a)
$$NO_3^- + H_2SO_4 \rightarrow HNO_3 + HSO_4^-$$

 $2HNO_3 \rightarrow H_2O + 2NO + 3[O]$
 $FeSO_4 + NO + 5H_2O \rightarrow [Fe(H_2O)_5 NO^+]SO_4$
Brown colour

204. (a)
$$K_{\mathcal{M}}MnF_{\mathcal{A}} + 2SbF_{\mathcal{A}} \rightarrow 2KSbF_{\mathcal{A}} + MnF_{\mathcal{A}} + \frac{1}{2}F_{2}$$

In this reaction, the stronger Lewis acid SbF_{i} displaces the weaker one, MnF_{i} from its salt. MnF_{i} is unstable and readily decomposes to give MnF_{i} and fluorine.

205. (a) Case hardening : The process of hardening the surface of wrought iron by depositing a surface layer of steel on it is called case-hardening it is done by heating wrought iron in contact with potassium ferrocyanide. Alternatively, case hardening can also be done by heating

wrought iron with charcoal and then plunging it a suitable oil. (a) Stainless steel is not corroded by air, moisture and small

206. (a) Stainless steel is not corroded by air, moisture and smatchange in *pH*. Made up of Fe, N and Cr.

(b) Variety of irons	% of Carbon
Cast or Pig iron	2.5 - 4%
Wrought iron	0.12 - 0.25%
Steel	0.2 - 0.5%

208. (a)

CLICK HERE

207.

- 209. (c) Tempering : If the quenched or hardened steel is reheated to a temperature between 503 to 573 K and then allowed to cool slowly, the process is called tempering.
- **226.** (d) % of carbon in wrought iron is 0.2-0.5% in steel 0.5-1.5% and in Pig iron 2.5-4%.

🕀 www.studentbro.in

227. (a) $Fe + 5CO \rightarrow [Fe(CO)_5]$ Pentacarbonyl iron (O)

- **230.** (d) Potash alum $K_2SO_4.Al_2(SO_4)_3.24H_2O$
- **231.** (c) A thin layer of Fe_3O_4 is formed on the *Fe* metal
- **232.** (a) $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$
- **233.** (b) Mn used to make alloy steel for armour plates, safes and helmets.
- **236.** (a) Solder (Pb + Sn), Bronze (Cu + Sn), Brass (Cu + Zn), Bell metal (Cu + Sn).
- **241.** (d) $Cu + Sn \rightarrow \text{Bell metal}$
- **242.** (b) Turnbull's blue Ferrous ferri cyanide $Fe_3[Fe(CN)_6]_2$
- 244. (a) $Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$ $Cu + ZnSO_4 \rightarrow \text{no reaction}$ $Cu + FeSO_4 \rightarrow \text{no reaction}$ $E^0 Zn^{+2}/Zn = -0.76 V$ $E^0 Cu^{2+}/Cu = +0.34 V$

$$E^{0}Fe^{2+}/Fe = -0.40V$$
$$E^{0}Ag^{+}/Ag = +0.80V$$

As it is clear that reduction potential of copper is more than Zn and Fe. Hence it is unable to displace them from their salts.

245. (b,c) Ferrous salts react with potassium ferricyanide to give blue colouration due to the formation of Tumbull's blue in this reaction, first ferrous salt is oxidised to ferric salt by the ferricyanide ion which itself is reduced to ferrocyanide.

$$\begin{split} Fe^{+2} + & [Fe(CN)_6]^{3-} \rightarrow Fe^{+3} + & [Fe(CN)_6]^{4-} \\ & \text{Ferricyanide} \\ Fe^{+3} + & [Fe(CN)_6]^{4-} \rightarrow & Fe[Fe(CN)_6]\}^- \\ Fe^{+3} + & [Fe(CN)_6]^{4-} + K^+ \rightarrow & K\{Fe[Fe(CN)_6]\} \\ & \text{Pot. ferric ferric cyanide} \\ & \text{or Tumbul Is blue} \end{split}$$

Ferric ions react with potassium thiocyanate to give blood red colouration due to the formation of ferric thiocyanate

$$FeCl_{3} + 3KCNS \rightarrow Fe(CNS)_{3} + 3KCl$$
Ferric thiocyanate
(Blood red)

250. (a) Electric protection : In this *Mg* acts as anode while iron pipe as cathode. *Mg* looses electrons prior to iron.

251. (b) Pyrite (FeS_2) known as fool's gold

- 252. (a) Stainless steel contains mainly Iron, Carbon, Nickel alongwith Chromium and Manganese.
- **253.** (d) Firstly, carbon which is added along which crushed haematite ore is oxidised to CO (and CO_2) and second the produced CO acts as chief reducing agent for the reduction of haematite to steel.
- 255. (a) By white tin platting iron can be protect by water.

256. (d)
$$2Fe + 3CO \xrightarrow{\text{Heat}} Fe_2O_3 + 3C$$

- **257.** (b) Magnetite is reduced by carbon.
- **258.** (d) Malachite $(Cu(OH)_2.CuCO_3)$ Basic copper carbonate
- **259.** (b) + 2 is most important oxidation state

$$Cu^{+1} + e^{-} \rightarrow Cu$$
; $E^{0} = +0.52$ V

 $Cu^{+2} + 2e^- \rightarrow Cu$; $E^0 = +0.34 V$

260. (d)
$$Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2C$$

262. (a) Metal Chloride in + 1 + 2 oxidation states

$$Cu$$
 $CuCl$ Cu_2Cl_2

Ag	AgCl	-
Na	NaCl	-

- **265.** (d) $Cu + HCl \rightarrow$ no reaction Copper is less reactive than hydrogen. Therefore it is unable to displace hydrogen from acid. $E_{Cu}^0 = +0.34$ and $E_H^0 = 0.00$
- **266.** (a) Gun metal contains *Cu* (88%), *Zn* (2%), Sn(10%), *Pb* (0.5%)
- **267.** (b) Solder *Sn* 67% and *Pb* 33%.
- **268.** (c) Brass contains Cu = 80%, Zn = 20%
- German silver contains Cu=60% , Zn=20% , Ni=20%
- **269.** (b) German silver contain Cu = 60, Zn = 20, Ni = 20%
- **270.** (b) Cu = 88%, Sn = 10%, Zn = 2%, $Pb = 0.5\% \rightarrow$ Gun Metal
- **274.** (b) $4Cu + 2H_2O \rightarrow 2Cu_2O + 2H_2$
- **276.** (b) $2Cu + 2H_2SO_4 + O_2 \rightarrow 2CuSO_4 + 2H_2O_4$
- **277.** (b) Cuprous ion (Cu^+) $3d^{10}$ Completely filled d sub shell

$3d^{10}$,			
11	11	11	11	11

Cupric ion Cu^{+2}

a a a

	$3d^9$					
. .	11	11	11	11	1	
One unpaired electron						

278. (b) $CuSO_4 + K_4[Fe(CN)_6] \rightarrow$ no reaction

5 11 0

$$4NH_4OH + CuSO_4 \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_{\text{Deep blue}}$$

$$\begin{aligned} & CuSO_4 + 5H_2O \rightarrow CuSO_4 . 5H_2O \\ & \text{Anhydrous} \end{aligned} \\ & 4FeCl_3 + 3Na_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6] + 12NaCl \\ & \text{Ferric ferrocyanide} \\ & (Prussian blue) \end{aligned}$$

a ao **a**u

280. (d) $CuSO_4 + 2KCN \rightarrow Cu(CN)_2 + K_2SO_4$

$$2Cu(CN)_2 \rightarrow Cu_2(CN)_2 + (CN)_2$$

$$Cu_2(CN)_2 + 6KCN \rightarrow 2K_3[Cu(CN)]$$

281. (a)
$$CuSO_4 + 4NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O_4$$

282. (c) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O_4$

284. (a)
$$2Cu + CO_2 + H_2O + O_2 \rightarrow CuCO_3.Cu(OH)_2$$

Basic copper carbonate

285. (a)
$$2CuSO_4 + K_4(Fe(CN)_6] \rightarrow Cu_2[Fe(CN)_6] + 2K_2SO_4$$

287. (d) $CuSO_4 + Hg \rightarrow No$ reaction

Hg is less reactive than Cu it comes below Cu in the reactivity series

288. (c) $Cu + H_2O \rightarrow$ No reaction

CLICK HERE

$$E^{0}_{Li^{+}/Li} = -3.04 V \qquad E^{0}_{H^{+}/H_{2}} = 0.00 V$$
$$E^{0}_{Ca^{+}/Ca} = -2.87 V \qquad E^{0}_{Cu^{+}/Cu} = +0.34 V$$

Cu comes below ${\cal H}$ in the electrochemical series. Hence, unable to displace hydrogen from water.

🕀 www.studentbro.in

289. (d)
$$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O_3$$

291. (c) $Cu + O_2 + CO_2 + H_2O \rightarrow Cu(OH)_2.CuCO_3$

- **292.** (d) Orford process \rightarrow During electrolytic refining of *Ni* from orford bottoms the *Pt* metal together with gold and silver collect as anode mud in concentrated form which is later processed to separate the metals.
- **294.** (b) AgBr is used in photography because it is light sensitive.

296. (b)
$$4AgCl + 2Na_2CO_3 \rightarrow 4Ag + 4NaCl + 2CO_2 + O_2$$

297. (d)
$$2AgNO_3 + K_2CrO_4 \rightarrow Ag_2CrO_4 + 2KNO_3$$
(Red)

- **298.** (c) $3Ag + 4HNO_3 \xrightarrow{\text{heat}} 3AgNO_3 + NO + 2H_2O$ dilute
- **299.** (d) $AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl$ (soluble complex)
- **301.** (b) AgBr is most sensitive to light and undergoes photochemical reduction

$$2AgBr \longrightarrow 2Ag + Br_2$$

302. (a) $NaNO_3$ is purely ionic while AgCl is covalent other compounds reacts with AgCl

$$2A_gCl + Na_2CO_3 \rightarrow 2A_g + 2NaCl + CO_2 + \frac{1}{2}O_2$$
$$A_gCl + 2Na_2CO_3 \rightarrow Na_2[A_g(S_2O_3)_2] + NaCl$$
$$A_gCl + 2NH_4OH \rightarrow [A_g(NH_3)_2Cl] + 2H_2O$$

 (a) A very dilute solution is used in causterisation of eyes and dental antiseptic

305. (a)
$$2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2$$

306. (a) $2AgNO_3 \xrightarrow{PH_3} 2Ag + 2NO_2 + O_2$

307. (b)
$$2Ag + 2H_2SO_4 \rightarrow Ag_2SO_4 + SO_2 + 2H_2O_4$$

- **308.** (c) Ag salts on strong heating from Ag
- **309.** (a) Silver metal is extracted from the argentite ore (Ag_2S) by the cyanide process, in which ore is treated with sodium cyanide sold. Dicyanoargentate(1) $[2Na\{Ag(CN)_2\}]$ is formed.
- **310.** (b) When a strip of copper is dipped in the solution of silver nitrate, the solution becomes blue. Cu is placed above Ag in electrochemical series. $2AgNO_3 + Cu \rightarrow Cu(NO_3)_2 + 2Ag$
- **311.** (d) $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$
- **312.** (d) $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ $2Al + 2NaOH \rightarrow 2NaAlO_2$
- **314.** (d) The white solid dissolves to form a blue solution. $CuSO_4 + dilH_2SO_4 \rightarrow CuSO_4.5H_2O$

317. (c)
$$ZnSO_4 + 2NaHCO_3 \rightarrow ZnCO_3 + Na_2SO_4 + H_2O + CO_2$$

- **318.** (b) $Zn + 2NaOH \xrightarrow{\text{heat}} Na_2ZnO_2 + H_2$
- **319.** (d) $ZnO + 2HCl \rightarrow ZnCl_2 + H_2O$ $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$
- **320.** (c) Very dil $HNO_3 :\rightarrow$ Ammonium nitrate is formed $4Zn + 10HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$

11

321. (d)
$$Zn_{30} \rightarrow 3d^{10}$$
, $4S^2$

$$Zn^{+2} \rightarrow 3d^{10}$$

No unpaired electrons

323. (d) Sodium tetraborate decahydrate $(Na_2B_4O_7.10H_2O)$

324. (a) Zn does not react with cold water. However it reacts with hot water and yield ${\cal H}_2$

$$Zn + H_2O \xrightarrow{\text{Boil}} ZnO + H_2$$

$$Zn + H_2SO_4(\text{dil}) \rightarrow ZnSO_4 + H_2$$

$$Zn + 2HCl(\text{dil}) \rightarrow ZnCl_2 + H_2$$

$$Zn + 2NaOH \xrightarrow{\text{heat}} Na_2ZnO_2 + H_2$$

325. (b) $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

- **327.** (a) The compound $ZnFe_2O_4$ is a normal spinel compound.
- **328.** (a) $ZnO + BaO \xrightarrow{1100^{\circ}C} BaZnO_2$

329. (b)
$$4Zn + 10HNO_3 \rightarrow 4Z(NO_3)_2 + NH_4NO_3 + 3H_2O_3$$

- 330. (d) Lead is used for making radiation shield.
- **331.** (b) $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$

$$2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$$

333. (d) In Mc Arthur Forest method, Silver is extarcted from solution of sodium argenticyanide by using Zn

$$2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(Cn)_4] + 2Ag \checkmark$$

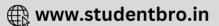
338. (d)
$$Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$$

 $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$

342. (c) Self reduction $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$

$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

- **345.** (c) $FeO + SiO_2 \rightarrow FeSiO_3$ Impurity Flux Slag
- **346.** (c) Parke's process is used to extract silver from argentiferrous lead.
- **347.** (c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2 \uparrow$
- 348. (d) Copper metallurgy involves bessemerisation. In bessemerisation converter, the impurities of Ferric Oxide forms slag with Silica and Copper Oxide gets reduced to give blister copper.


$$FeO + SiO_2 \longrightarrow FeSiO_3$$

Slag

$$Cu_2S + Cu_2O \longrightarrow 6Cu \downarrow +SO_2 \uparrow$$

349. (c) Bessemer converter is used to purify Pig Iron by passing compressed air over pig iron in Bessemer converter to produce slag.

$$2Mn + O_2 \longrightarrow 2MnO; Si + O_2 \longrightarrow SiO_2$$
$$2C + O_2 \longrightarrow 2CO; \qquad MnO + SiO_2 \longrightarrow MnSiO_3$$
_{Slag}

- **353.** (d) 1% Impure copper
- **358.** (c) None of the above. Since, gold is a noble metal and common acids do not attack on it if used singly.
- **359.** (a) Due to reduction of copper $Zn + CuSO_4 \rightarrow Cu + ZnSO_4$

(a) Reduction of Cu^{++} . 360. $Fe + CuSO_4 \rightarrow FeSO_4 + Cu$

Critical Thinking Questions

- (c) Transition metal which have low oxidation number show the 1. oxidising nature because of great tendency to lose the electron.
- (b) Cr^{+2} and Fe^{+2} 2.

 $Cr^{+2} - 3d^4$ 4 unpaired electrons

 $Fe^{+2} - 3d^6$ 4 unpaired electrons

.

(d) The solubility order is : з.

$$AgF > AgCl > AgBr > AgI > Ag_2S$$
.

(d) No of unpaired electron in different ion are as under 4.

$$Mg^{2^{+}} \rightarrow 1s^{2}, 2s^{2} 2p^{6}, 3s^{0} = 0$$

$$Ti^{3^{+}} \rightarrow 1s^{2}, 2s^{2} 2p^{6}, 3s^{2} 3p^{6} 3d^{1}, 4s^{0} = 1$$

$$V^{3^{+}} \rightarrow 1s^{2}, 2s^{2} 2p^{6}, 3s^{2} 3p^{6} 3d^{2}, 4s^{0} = 2$$

$$Fe^{2^{+}} \rightarrow 1s^{2}, 2s^{2} sp^{6}, 3s^{2} 3p^{6} 3d^{6}, 4s^{0} = 4$$

5. (a) The magnitude of stability constants for some divalent metal ions of the first transition series with oxygen or nitrogen donar ligands increases in the order.

$$Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2-}$$

- (c) Strong oxidising agents such as PbO_2 or sodium bismulthate 6. $(NaBiO_3)$ oxidise Mn^{2+} to MnO_4^- or Mn^{7+} .
- 7. (c) Given n = 4 x = 5

So $(4-1)s^2(4-1)p^6(4-1)d^5 4s^2_{3s^2}$ Total electron = 2 + 6 + 5 + 2 = 15Electron in 1 + 2 orbit = 2 + 8 = 10Total electron = 10 + 15 = 25No. of electron = No. of proton

- So total proton = 25
- 8. Iron decomposes steam into hydrogen when it is passed over (b) red hot iron

$$2Fe + 3H_2O \rightarrow Fe_2O_3 + 3H_2 \uparrow$$

9. (d)
$$CoCl_3 - Co^{+3} - 3d^6 4s^0$$

4 unpaired electrons. So it will be coloured.

10. (a) Due to Lanthanoid contraction order will

$$Yh^{+3} < Pm^{3+} < Ce^{+3} < La^{3+}$$

11. (d) In this reaction

$$MnO_{4}^{-} + 5Fe^{2+} + 8H^{+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O$$

he

5 time quantity of Fe^{2+} consumed.

So 5 time of $FeSO_4$ will be equivalent to 50 ml

(abc) Due to less capacity of hydrogen bonding of I_2 with water 12. HgI_2 is less soluble in water.

13. (c)
$$\frac{\text{Transitionelement } + \text{Inner transitionelement}}{\text{Total element}} \times 100$$

$$\frac{33+28}{105} \times 100 = 58.09 \approx 60\%$$

- All metal carbonyls are diamagnetic cyanide complexes are also 14. (a) diamagnetic.
- 22 carat gold is alloy of copper and gold. 15. (c)
- Fe^{3+} have highest no. of unpaired electron so it will be more (b) 16. paramagnetic.
- (d) *p*-electrons in Cl^- (atomic no. of Cl = 17) 17.

$$Cl^{-} \to 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}$$
$$Fe^{2+} \to 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{6}$$

In Fe^{+2} total number of $de^- = 6$ which is not equal to pe^{-} in $Cl^{-} = 12$.

- (a) Basic character of oxide decreases from left to right in a period 18. of periodic table.
- (b) $CuSO_{4}.5H_{2}O$ because it has only one unpaired electrons. 19.
- The existence of Fe^{2+} and NO^+ in Ntroprusside ion 20. (c) $[Fe(CN)_5 NO]^{2-}$ can be established by measuring the magnetic moment of the solid compound which should correspond to $(Fe^{2+} = 3d^6)$ four unpaired electrons.

21. (c)
$$V^{+4} \to 3d^1 4s^0$$

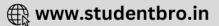
1 unpaired electrons. Hence, it is paramagnetic and coloured compound.

22. (a)
$$3MnO_4^- + 5(Fe^{2+} + C_2O_4^{2-}) + 24H^+ \rightarrow 3M$$

 $3Mn^2 + 5Fe^{3+} + 10CO_2 + 12H_2O$

Thus 5*M* of FeC_2O_4 is oxidised by 3*M* of $KMnO_4$ then 1*M* of FeC_2O_4 is oxidised by 3/5 mole of $KMnO_4$.

23. (b)
$$2MnO_4^- + 16H^+ + C_2O_4^{--} \rightarrow 2Mn^{+2} + 2CO_2 + 8H_2O$$


$$(b) \quad ScCl_3 \rightarrow Sc^{+3} + 3Cl^{-1}$$

24

No unpaired electron so will show diamagnetic character and will be repelled, so will weigh less.

25. (a)
$$(Ar) 3s^{1} + 3 = Ti$$
, it means M^{3+} form Ti^{3+} ion

26. (b)
$$V = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$$

 $Cr = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

$$Mn = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{5} 4s^{2}$$
$$Fe = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{6} 4s^{2}$$

In second ionization enthalpy Cr^+ has exact half filled *d*-sub shell.

Assertion and Reason

- **2.** (b) Zn^{2+} is dimagnetic because it has no unpaired electrons
- **3.** (c) The assertion is correct but the reason is false. Actually transition metal show variable valency due to very small difference between the ns^2 and (n-1)d electrons, Therefore, assertion is correct but reason is false.
- 4. (e) The aqueous solution of $FeCl_3$ is acidic in nature because $FeCl_3$ hydrolyse in water to produce acid ion.

 $FeCl_3 + 3H_2O \rightarrow Fe(OH)_3 + 3HCl$

Therefore, assertion is false but reason is true.

5. (a) AgCl on adding to a solution of NH_4OH solution dissolves to form a complex diamine silver chloride.

$$AgCl + 2NH_4OH \rightarrow Ag(NH_2)_2Cl + 2H_2O$$

Therefore, both assertion and reason are true and reason is a correct explanation of assertion.

- (c) Pure iron is not used for making tools and machines as it is soft. Therefore, cannot be used for this purpose. Assertion is true but reason is false.
- 7. (a) A solution of Na_2CrO_4 in water is intensely coloured due to oxidation state of chromium in Na_2CrO_4 is +6. Here both assertion and reason are correct.
- 8. (d) Copper corrods at negligible rates in unpolluted air, water and deaerated non-oxidizing acids. Pure copper and the high copper alloys can be considered to exhibit similar resistance to most corrosive environments. They posses excellent resistance to atmospheric environments. Corrosion is a spontaneous process for which free energy change must be negative.
- **9.** (c) $_{24} Cr \rightarrow [Ar] 3d^4 4s^2$

 $Cr \rightarrow [Ar] 3d^5 4s^1$

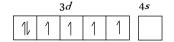
Full-filled s-orbital has greater stability.

It has four unpaired electrons and it is paramagnetic.

- (b) Due to larger surface area and variable valencies to form intermediate absorbed complex easily, transition metals are used as good catalysts.
- 12. (c) Rusting involves reduction of absorbed oxygen to OH^- ions and oxidation of iron to Fe^{2+} ions. The two ions combine to yield $Fe(OH)_2$ which gets oxidized to give $Fe_2O_3.nH_2O$ (rust). The presence of acid helps dissolution of pure iron to ferrous ions while electrolytes increase the conductivity and assist the cell action.
- 13. (b) AgBr is the most sensitive silver halide to photo reduction. Hence it is used as the light sensitive material in photographic films. The unchanged AgBr is dissolved in hypo solution to cast an image on photographic plate.

 $2AgBr \xrightarrow{hv} 2Ag + Br_2$

- (a) Tungsten is a metal of high melting point and its filament gives brilliant light on passing electric current.
- 17. (b) The magnetic moments are lesser than the fact that 5*f* electrons of actinides are less effectively shielded which results in quenching of orbital contribution.
- 18. (b) The higher the charge on the metal ion, smaller is the ionic size and more is the complex forming decreases in the order $M^{4+} > MO_2^{2+} > M^{3+} > MO_2^+$. The higher tendency of complex formation of MO_2^{2+} of charge on metal atom M in MO_2^{2+}
- 20. (d) Extraction of iron metal from iron oxide ore is carried out by heating with coke and flux (calcium carbonate). Flux is a slag forming substance. It converts infusible impurities into fusible slag.

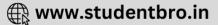

The reaction : $Fe_iO_{i,a} \rightarrow Fe_a + 3 / 2 O_{i,a}$ is not a spontaneous process. Fe_iO_i is converted to FeO at about $400^{\circ}C$. FeO is converted to Fe at about $800^{\circ}C - 1000^{\circ}C$.

🕀 www.studentbro.in

10. (a) *Fe* has atomic no. 26.

So its electronic configuration is $[Ar] 3d^6 4s^2$.

 Fe^{2+} has electronic configuration [Ar] $3d^6$.


d and f-Block Elements

ET Self Evaluation Test -19

		$MnSO_4$ is half of its molecular weight		(c) +5	(a) +/
	when it is converted to		11.	The number of unpaired ele (a) 4	ectrons in Mn^{+3} is (b) 3
	(a) Mn_2O_3	(b) MnO_2		(a) 4 (c) 2	(d) Zero
	(c) MnO_4^-	(d) MnO_4^{2-}	12.	The correct order of ionic ra	adii of Y^{3-} , La^{3+} , Eu^{3+} and Lu^{3+} is [CB
	In which compound chron	nium has +6 oxidation state		(a) $La^{3+} < Eu^{3+} < Lu^{3+}$	$^{+} < Y^{3+}$
		[CPMT 2003]		(b) $Y^{3-} < La^{3+} < Eu^{3+}$	< <i>Lu</i> ³⁺
	(a) $K_2 C r_2 O_7$	(b) CrCl ₃		(c) $Lu^{3+} < Y^{3+} < Eu^{3+}$	$ < La^{3+} $
	(c) $Cr(SO_4)_3$	(d) None of these		(d) $Lu^{3+} < Eu^{3+} < La^{3}$	$^{+} < Y^{3+}$
	Which of the following me	etal does not show variable valency		(Atomic No. $Y = 39$, $La = 57$	
		[RPET 2000]	13.	•	sulphate in acidic medium [MP PET 1997]
	(a) Fe	(b) <i>Hg</i>		(a) 1	(b) 3
	(c) <i>Zn</i>	(d) <i>Cu</i>		(c) 5	(d) 6
	Which of the following	metals will not react with solution of	14.		to Cu is almost identical because of
	$CuSO_4$	[CPMT 1974, 80; MH CET 2004]		(a) Increasing nuclear chan(b) Repulsion among incre	
	(a) Fe	(b) <i>Zn</i>			fect to nullify increased nuclear charge
	(c) <i>Mg</i>	(d) <i>Ag</i>		(d) All the above	-
	Which metal among follo	owing has strongest tendency to undergo	15.		in K_2MnO_4 and in $KMnO_4$ are
	oxidation	[CPMT 1989]		respectively	[MP PET 1991, 2001] (b) + 6 and + 6
	(a) <i>Zn</i>	(b) <i>Cu</i>		(a) + 6 and + 7 (c) + 7 and + 7	(b) + 6 and + 6 (d) + 7 and + 6
	(c) <i>Mg</i>	(d) <i>Al</i>	16.	. ,	d through aqueous solution of copper
	Which of the following ha	s highest paramagnetic character		sulphate, the product produ	
	(a) Mn (II)	(b) <i>Fe</i> (11)		(a) $Cu(OH)_2$	(b) Cu_3P_2
	(c) <i>Co</i> (11)	(d) <i>Ni</i> (11)		(c) $[Cu(PH_3)_4]^{2+}$	(d) $[Cu(PH_3)_2]^{2+}$
		. It forms complexes with cations. Which	17.	Hydroxide soluble in ammor	
		ns does not form complex with ammonia		(a) $Al(OH)_3$	[NCERT 1973, 77; MNR 1984; KCET 1992] (b) $Fe(OH)_3$
	(a) Ag^+	(b) Cu^{++}		-	
	(c) Cd^{++}	(d) Pb^{++}	10	(c) $Cr(OH)_3$	(d) $Cu(OH)_2$
	Which of the following is	expected to form colourless complex[AMU 20	18. 100]	and lowest density	r of transitional elements exhibit highest
	(a) Ni^{2+}	(b) <i>Cu</i> ⁺		(a) Os and Sc	(b) Os and Pt
	(c) Ti^{3+}	(d) Fe^{3+}		(c) Hg and Sc	(d) Os and Ir
	Which of the following is		19.		of ferrous ammonium sulphate it treated
	(a) Cr	(b) <i>Mn</i>			ate solution, the ion which is oxidised is[BH
	(c) <i>W</i>	(d) <i>Co</i>		(a) MnO_4	(b) NH_4^+
	The most stable oxidation	state of <i>Mn</i> is		(c) Fe^{++}	(d) SO_4^{2-}
	(a) +2	(b) +4			

Answers and Solutions

(SET -19)

1. (b)
$$MnSO_4 \xrightarrow{-2e^-} MnO_2$$

Equivalent wt. = $\frac{\text{molecular wt.}}{\text{total no. of } e^- \text{ gained or lost}} = \frac{M}{2}$

(a) In
$$K_2Cr_2O_7$$
, Cr has + 6 oxidation state.

3. (c) Zn shows only + 2 valency.

4. (d) Because Ag comes below in the electromotive series also standard electrode potential of Cu and Ag are:

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s); [SEP - E^{o}_{298} (volt) = +0.18]$$

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s); [SEP - E_{298}^{o} \text{ (volt)} = +0.80]$$

5. (c) Mg; because of its high hydration energy.

6. (a)
$$Mn^{+2} - 3d^5$$

5 unpaired element in $d\mbox{-}{\rm subshell}$ so it has highest paramagnetic.

- 7. (d) Pb^{++} because it does not have vacant *d*-orbitals nor high nuclear charge and it does not belong to transition series.
- **8.** (b) In Cu^{+1} (cuprous ion) *d* orbitals are completely filled so it will form colourless complex.
- **9.** (d) The substances which are strongly attracted by magnetic field and show permanent magnetism even in absence of magnetic field are ferromagnetic *e.g.*. *Co*, *Fe*, *Ni*

~

10. (a)

2.

As half filled orbitals are more stable than partial filled ones. Therefore, + 2 is most stable oxidation state.

n. (a)
$$3d^5$$
 $4s^0$
 Mn^{+3} 1 1 1 1

12. (c) Lanthanide contraction results in small size of Lu^{3+} , so

$$Lu^{3+} < Y^{3+} < Cu^{3+} < La^{3+}$$

- (d) Oxidation number of chromium in potassium dichromate is +6 so it oxidise 6 moles of ferrous sulphate in acidic medium.
- 14. (c) Increased screening effect to nullify increased nuclear charge.
- **15.** (a) O.N. of $K_2 MnO_4$

$$2+x-8=0$$

 $x = 6$
O.N. of *KMnO*₄
 $1+x-8=0$
 $x = 7$

16. (b)
$$3CuSO_4 + 2PH_3 \rightarrow Cu_3P_2 + 3H_2SO_4$$

(d) Due to formation of complex

$$Cu(OH)_2 + 4 NH_3 \rightarrow [Cu(NH_3)_4](OH)_2$$

17.

18.

$$Os = 22.60 \, gm/cm^3$$
$$Sc = 3.01 gm/cm^3$$

19. (c)
$$Fe^{2+} \xrightarrow{\text{oxidises}} Fe^{3+}$$

